The International Organic Nitrogen Long-term Fertilization Experiment (IOSDV) at Vienna

2002 ◽  
Vol 48 (5) ◽  
pp. 471-484 ◽  
Author(s):  
Johannes Hösch ◽  
Georg Dersch
2018 ◽  
Vol 67 (1) ◽  
pp. 91-103
Author(s):  
László Simon ◽  
Marianna Makádi ◽  
György Vincze ◽  
Zsuzsanna Uri ◽  
Katalin Irinyiné Oláh ◽  
...  

A small-plot long-term field fertilization experiment was set up in 2011 with willow (Salix triandra x Salix viminalis ’Inger’) grown as an energy crop in Nyíregyháza, Hungary. The brown forest soil was treated three times (in June 2011, May 2013, May 2016) with municipal biocompost (MBC), municipal sewage sludge compost (MSSC) or willow ash (WA), and twice (June 2011, May 2013) with rhyolite tuff (RT). In late May – early June 2016 urea (U) and sulphuric urea (SU) fertilizers were also applied to the soil as top-dressing (TD). These fertilizers and amendments were also applied to the soil in 2016 in the combinations; MBC+SU, RT+SU, WA+SU and MSSC+WA. All the treatments were repeated four times. In July 2016 the highest nitrogen concentrations in willow leaves were measured in the U (3.47 m/m%) and SU (3.01 m/m%) treatments, and these values were significantly higher than the control (2.46 m/m%). An excess of nitrogen considerably reduced the Zn uptake of the leaves, with values of 39.5 μg g-1 in the U treatment, 53.4 μg g-1 in the SU treatment, and 63.5 μg g-1 in the control. All other amendments or TDs, except for WA, enhanced the specific potassium concentrations in willow leaves compared to the control. No significant quantities of toxic elements (As, Ba, Cd, Pb) were transported from soil amendments or TDs to the willow leaves. In July 2016 the most intensive leaf chlorophyll fluorescence was observed in the MSSC and MSSC+WA treatments.


2017 ◽  
Vol 169 ◽  
pp. 71-80 ◽  
Author(s):  
Juan M. Martínez ◽  
Juan A. Galantini ◽  
Matias E. Duval ◽  
Fernando M. López

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Joana Séneca ◽  
Andrea Söllinger ◽  
Craig W. Herbold ◽  
Petra Pjevac ◽  
Judith Prommer ◽  
...  

AbstractGlobal warming increases soil temperatures and promotes faster growth and turnover of soil microbial communities. As microbial cell walls contain a high proportion of organic nitrogen, a higher turnover rate of microbes should also be reflected in an accelerated organic nitrogen cycling in soil. We used a metatranscriptomics and metagenomics approach to demonstrate that the relative transcription level of genes encoding enzymes involved in the extracellular depolymerization of high-molecular-weight organic nitrogen was higher in medium-term (8 years) and long-term (>50 years) warmed soils than in ambient soils. This was mainly driven by increased levels of transcripts coding for enzymes involved in the degradation of microbial cell walls and proteins. Additionally, higher transcription levels for chitin, nucleic acid, and peptidoglycan degrading enzymes were found in long-term warmed soils. We conclude that an acceleration in microbial turnover under warming is coupled to higher investments in N acquisition enzymes, particularly those involved in the breakdown and recycling of microbial residues, in comparison with ambient conditions.


2014 ◽  
pp. 43-47
Author(s):  
Judit Horváth ◽  
János Kátai

The research topic has timeliness, since the rational utilization and protection of the soil, besides the conservation of its diverse functions is part of the sustainable development. Research of the long-term experiments is esentially important, because it can model the term effects in the same place, under the same conditions. If we want to get accurate informations about the occured changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest. Nitrogen is an essential element for living organisms, it is present in the soil mainly in organic form. In general only only a low percentage of the total nitrogent content can be used directly by plants in the soil. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it get into the soil by the fertilization. The plants incorporote the mineral nitrogen into our bodies. This is how nitrogen turnover is realized when mineral forms become organic and organic forms become mineral. The purpose of our paper is to make a literature before our research.


2014 ◽  
Vol 60 (No. 8) ◽  
pp. 344-350 ◽  
Author(s):  
M. Jiang ◽  
Shen XP ◽  
W. Gao ◽  
Shen MX ◽  
Dai QG

We studied the heterogeneity of soil weed seed-bank in a rice-wheat rotation system after long-term application of different organic or non-organic fertilizers, and the effects of major nutrients on the characteristics of the weed seed-bank. The soil was sampled in the Taihu area after a 31-year long-term fertilization experiment. Weed seeds were identified and counted in the surface soil of 12 differentially treated areas using microscopic examination, and analyzed by the Simpson, Shannon, Margalef, and Pielou indexes. The long-term application of organic fertilizers could significantly reduce the density of soil weed seed-bank; non-organic fertilizers and a combination of non-organic and organic fertilizers had a significant influence on the number of species and diversity of weeds. The application of organic fertilizers improved the Simpson, Shannon and Pielou indexes of soil weed seed-bank community and stabilized the community structure. In terms of the soil nutrient system itself, the soil organic materials and total nitrogen content are the main environmental factors affecting the distribution of soil weed seed-bank.


2012 ◽  
Vol 104 (5) ◽  
pp. 1223-1237 ◽  
Author(s):  
Peter Anthony ◽  
Gary Malzer ◽  
Mingchu Zhang ◽  
Stephen Sparrow

2008 ◽  
Vol 58 (1) ◽  
pp. 239-245 ◽  
Author(s):  
M. Naso ◽  
A. Chiavola ◽  
E. Rolle

This paper provides new insights on the application of the ozonation process for the reduction of the activated sludge production in a sequencing batch reactor (SBR). The study was performed in two identical lab-scale SBRs plant, one for experimental activities (Exp SBR) and one used as control (Control SBR), both fed with domestic sewage. A fraction of the activated sludge collected from the Exp SBR at the end of the aerobic react phase was periodically subjected to ozonation for 30 minutes at three different specific dosages (0.05, 0.07 and 0.37 g O3/gSS) and then recirculated before the beginning of the following cycle. Recirculation of the ozonated sludge to the Exp SBR did not appreciably affect the efficiency of the biological nitrogen and carbon removal processes. Nonetheless, an improvement of the denitrification kinetic was observed. Mixed liquor volatile and suspended solids (MLSS and MLVSS, respectively) concentrations in the reactor decreased significantly with time for long term application of the ozonation treatment. Kinetic batch tests on unstressed sludge taken from Control SBR indicated that the different oxidant dosages (0.05, 0.07 and 0.37 g O3/gSS) and durations of the ozonation process (10, 20 and 30 minutes) used remarkably affected chemical oxygen demand (COD) and organic nitrogen fractioning. In particular, soluble and biodegradable fractions seemed to be higher at lower dosage and longer contact time.


Geoderma ◽  
2010 ◽  
Vol 157 (3-4) ◽  
pp. 80-85 ◽  
Author(s):  
E. Lugato ◽  
G. Simonetti ◽  
F. Morari ◽  
S. Nardi ◽  
A. Berti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document