Growth characteristics of micro-green algae

1985 ◽  
Vol 22 (5) ◽  
pp. 2855-2860
Author(s):  
Christine M. Happey-Wood
1995 ◽  
Vol 52 (10) ◽  
pp. 2251-2263 ◽  
Author(s):  
Michael A. Turner ◽  
Leif J. Sigurdson ◽  
David L. Findlay ◽  
E. Todd Howell ◽  
Gordon G. C. Robinson ◽  
...  

Filamentous green algae, predominantly Mougeotia and Zygogonium, bloom frequently in the littoral zones of acidified lakes. Growth characteristics of Zygogonium-dominated filamentous green algae were studied for 4 yr in an experimentally acidified (pH 4.5) lake at the Experimental Lakes Area of northwestern Ontario. They were present in low abundance as periphyton (algal associations attached to surfaces) during spring, and as blooms of metaphyton (benthic algae unconstrained by surfaces) beginning in midsummer and reaching a maximum in early fall. Metaphytic filamentous green algae displayed high photosynthetic capacity in summer despite the oligotrophic nature of the acidified lake. The major factors controlling photosynthetic rates of Zygogonium were similar to those controlling Mougeotia, and included algal crowding, irradiance, dissolved inorganic carbon, and water temperature. Rates of photosynthesis were negatively dependent upon algal crowding, so that highest rates were associated with minimum algal crowding. Light requirements for photosynthesis were higher than those of the epilithon, which were dominant prior to acidification. The dependence of photosynthesis on ambient concentrations of dissolved inorganic carbon was partly regulated by water temperature. Anthropogenically caused releases from growth limitations (e.g., increased availability of limiting nutrients, increased water temperature, and extension of the growing season) may cause proliferation of filamentous green algae in the future.


2021 ◽  
Vol 11 (04) ◽  
pp. 157-168
Author(s):  
Juhong Tao ◽  
Yongyan Pei ◽  
Jianyi Zhu ◽  
Qinqin Lu ◽  
Hongxia Jiang ◽  
...  

2013 ◽  
Vol 46 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Kyung-A You ◽  
◽  
Myeong-Seop Byeon ◽  
Seok-Jea Youn ◽  
Soon-Jin Hwang ◽  
...  

2018 ◽  
Vol 31 (1) ◽  
pp. 409-421 ◽  
Author(s):  
Junping Lv ◽  
Xuechun Wang ◽  
Jia Feng ◽  
Qi Liu ◽  
Fangru Nan ◽  
...  

Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


2006 ◽  
Vol 175 (4S) ◽  
pp. 361-361
Author(s):  
Paul L. Crispen ◽  
Rosalia Viterbo ◽  
Richard E. Greenberg ◽  
David Y.T. Chen ◽  
Robert G. Uzzo

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
HH Kim ◽  
BJ Seong ◽  
KS Lee ◽  
SI Kim ◽  
JM Geun ◽  
...  

2019 ◽  
Author(s):  
YN An ◽  
JA Han ◽  
ES Yi ◽  
GH Park ◽  
HJ An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document