Directed‐energy beam weapons

1987 ◽  
Vol 27 (221) ◽  
pp. 7-21
Keyword(s):  
2021 ◽  
pp. 1-8
Author(s):  
Bahman Zohuri ◽  
◽  
Masoud Moghaddam ◽  

Aftermath of “Havana Syndrome” that took place in Cuba, at around 2016 – 2017 time-frame, where American diplomat got mysterious sickness, the dawn of a new military age was born, where directed energy weapons in form waves are now in play. Among concerned government agencies, they still cannot find the source of the sickness except, stating that whatever was the cause, it is unnatural source, but rather man-made weapons in form of high microwave beam weapon. However, this author with this short review is going to show a different perspective of directed energy beam weapons, knowingly that this type weapons are not anything new and scientist and engineer, at national laboratories, department of energy and defense level including some universities nation-wide have been involved with research and development of such direct energy weapons. The battles of tomorrow are not going to take place with speed of bullet or artillery shell, but rather will be fought with speed of light and electron, and that is why the new military age presents itself along with new innovative technologies that is discussed here in this short review. For purpose beam weapons as directed energy we are not taking under consideration, the high power energy laser, since it is beyond the scope of this short review, however we focus on wave frequencies that are falling within high power microwave bandwidth and we introduce another beam weapon’s concept that is known as scalar wave, which we know it as longitudinal scalar wave, that possibly can justify the above sickness caused by the unnatural source, which falls within a man-made source of energy that can travel long distance and penetrated even through Faraday’s cage and any other obstacle in front of very similar to behavior and characteristic of soliton wave. Whatever covert sound or high energy acoustic or wave weapon this man-made phenomena was or is will be discussed in this report with some means of science physics behind it. All scientific discussion in this short review is presentation of this author period


Author(s):  
Ozer Unal

Interest in ceramics as thermal barrier coatings for hot components of turbine engines has increased rapidly over the last decade. The primary reason for this is the significant reduction in heat load and increased chemical inertness against corrosive species with the ceramic coating materials. Among other candidates, partially-stabilized zirconia is the focus of attention mainly because ot its low thermal conductivity and high thermal expansion coefficient.The coatings were made by Garrett Turbine Engine Company. Ni-base super-alloy was used as the substrate and later a bond-coating with high Al activity was formed over it. The ceramic coatings, with a thickness of about 50 μm, were formed by EB-PVD in a high-vacuum chamber by heating the target material (ZrO2-20 w/0 Y2O3) above its evaporation temperaturef >3500 °C) with a high-energy beam and condensing the resulting vapor onto a rotating heated substrate. A heat treatment in an oxidizing environment was performed later on to form a protective oxide layer to improve the adhesion between the ceramic coating and substrate. Bulk samples were studied by utilizing a Scintag diffractometer and a JEOL JXA-840 SEM; examinations of cross-sectional thin-films of the interface region were performed in a Philips CM 30 TEM operating at 300 kV and for chemical analysis a KEVEX X-ray spectrometer (EDS) was used.


Author(s):  
Patrick Echlin

The unusual title of this short paper and its accompanying tutorial is deliberate, because the intent is to investigate the effectiveness of low temperature microscopy and analysis as one of the more significant elements of the less interventionist procedures we can use to prepare, examine and analyse hydrated and organic materials in high energy beam instruments. The promises offered by all these procedures are well rehearsed and the litany of petitions and responses may be enunciated in the following mantra.Vitrified water can form the perfect embedding medium for bio-organic samples.Frozen samples provide an important, but not exclusive, milieu for the in situ sub-cellular analysis of the dissolved ions and electrolytes whose activities are central to living processes.The rapid conversion of liquids to solids provides a means of arresting dynamic processes and permits resolution of the time resolved interactions between water and suspended and dissolved materials.The low temperature environment necessary for cryomicroscopy and analysis, diminish, but alas do not prevent, the deleterious side effects of ionizing radiation.Sample contamination is virtually eliminated.


Sign in / Sign up

Export Citation Format

Share Document