scholarly journals On the numerical accuracy of trajectory models for long‐range transport of atmospheric pollutants

1983 ◽  
Vol 21 (1) ◽  
pp. 14-39 ◽  
Author(s):  
John L. Walmsley ◽  
Jocelyn Mailhot
2018 ◽  
Author(s):  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Patrick Chazette ◽  
Joel Brito ◽  
Marco Gaetani ◽  
...  

Abstract. The complex vertical distribution of aerosols over coastal southern West Africa (SWA) is investigated using airborne observations and numerical simulations. Observations were gathered on 2 July 2016 offshore of Ghana and Togo, during the field phase of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa project. The aerosol loading in the lower troposphere includes emissions from coastal cities (Accra, Lomé, Cotonou and Lagos) as well as biomass burning aerosol and dust associated with long-range transport from Central Africa and the Sahara, respectively. Our results indicate that the aerosol distribution is impacted by subsidence associated with zonal and meridional regional scale overturning circulations associated with the land-sea surface temperature contrast and orography over Ghana and Togo. Numerical tracer release experiments highlight the dominance of aged emissions from Accra on the observed pollution plume loadings over the ocean. The contribution of aged emission from Lomé and Cotonou is also evident above the marine boundary layer. Lagos emissions do not play a role for the area west of Cotonou. The tracer plume does not extend very far south over the ocean (i.e. less than 100 km from Accra), mostly because emissions are transported northeastward near the surface over land and westward above the marine atmospheric boundary layer. The latter is possible due to interactions between the monsoon flow, complex terrain and land-sea breeze systems, which support the vertical mixing of the urban pollution. This work sheds light on the complex – and to date undocumented – mechanisms by which coastal shallow circulations distribute atmospheric pollutants over the densely populated SWA region.


2018 ◽  
Vol 176 ◽  
pp. 10006
Author(s):  
Aleksey Malinka ◽  
Luc Blarel ◽  
Ludmila Chaikovskaya ◽  
Anatoli Chaikovsky ◽  
Natalia Denishchik-Nelubina ◽  
...  

This presentation contains the results of the 10-year research of Belarusian Antarctic expeditions. The set of instruments consists of a lidar, an albedometer, and a scanning sky radiometer CIMEL. Besides, the data from satellite radiometer MODIS were used to characterize the snow cover. The works focus on the study of aerosol, cloud and snow characteristics in the Antarctic, and their links with the long range transport of atmospheric pollutants and climate changes.


2021 ◽  
Author(s):  
Cynthia H. Whaley ◽  
Rashed Mahmood ◽  
Knut von Salzen ◽  
Barbara Winter ◽  
Sabine Eckhardt ◽  
...  

Abstract. The Arctic atmosphere is warming rapidly and its relatively pristine environment is sensitive to the long-range transport of atmospheric pollutants. While carbon dioxide is the main cause for global warming, short-lived climate forcers (SLCFs) such as methane, ozone, and particles also play a role in Arctic climate on near-term time scales. Atmospheric modelling is critical for understanding the abundance and distribution of SLCFs throughout the Arctic atmosphere, and is used as a tool towards determining SLCF impacts on climate and health in the present and in future emissions scenarios. In this study, we evaluate 18 state-of-the-art atmospheric and Earth system models, assessing their representation of Arctic and Northern Hemisphere atmospheric SLCF distributions, considering a wide range of different chemical species (methane, tropospheric ozone and its precursors, black carbon, sulfate, organic aerosol, and particulate matter) and multiple observational datasets. Model simulations over four years (2008–2009 and 2014–2015) conducted for the 2021 Arctic Monitoring and Assessment Programme (AMAP) SLCF assessment report are thoroughly evaluated against satellite, ground, ship and aircraft-based observations. The results show a large range in model performance, with no one particular model or model type performing well for all regions and all SLCF species. The multi-model mean was able to represent the general features of SLCFs in the Arctic, though vertical mixing, long-range transport, deposition, and wildfire emissions remain highly uncertain processes. These need better representation within atmospheric models to improve their simulation of SLCFs in the Arctic environment.


Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmén ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document