scholarly journals Annual mean surface heat fluxes in the Arabian Gulf and the net heat transport through the Strait of Hormuz

1991 ◽  
Vol 29 (1) ◽  
pp. 54-61 ◽  
Author(s):  
F. Ahmad ◽  
S.A.R. Sultan
Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 504 ◽  
Author(s):  
Fahad Al Senafi ◽  
Ayal Anis ◽  
Viviane Menezes

The air–sea heat fluxes in marginal seas and under extreme weather conditions constitute an essential source for energy transport and mixing dynamics. To reproduce these effects in numerical models, we need a better understanding of these fluxes. In response to this demand, we undertook a study to examine the surface heat fluxes in the Arabian Gulf (2013 to 2014) and Red Sea (2008 to 2010)—the two salty Indian Ocean marginal seas. We use high-quality buoy observations from offshore meteorological stations and data from two reanalysis products, the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2) from the National Aeronautics and Space Administration (NASA) and ERA5, the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses of global climate. Comparison of the reanalyses with the in situ-derived fluxes shows that both products underestimate the net heat fluxes in the Gulf and the Red Sea, with biases up to −45 W/m 2 in MERRA2. The reanalyses reproduce relatively well the seasonal variability in the two regions and the effects of wind events on air–sea fluxes. The results suggest that when forcing numerical models, ERA5 might provide a preferable dataset of surface heat fluxes for the Arabian Gulf while for the Red Sea the MERRA2 seems preferable.


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

2021 ◽  
Vol 149 (5) ◽  
pp. 1517-1534
Author(s):  
Benjamin Jaimes de la Cruz ◽  
Lynn K. Shay ◽  
Joshua B. Wadler ◽  
Johna E. Rudzin

AbstractSea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U10 and air–sea temperature and moisture disequilibrium (ΔT and Δq, respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven (U10) and thermodynamically driven (ΔT and Δq) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δq is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δq > 5 g kg−1 at moderate values of U10 led to intense inner-core moisture fluxes of greater than 600 W m−2 during RI. Peak values in Δq preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δq is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes.


2010 ◽  
Vol 24 (4) ◽  
pp. 845-849 ◽  
Author(s):  
M. Ajith ◽  
Ranjan Das ◽  
Ramgopal Uppaluri ◽  
Subhash C. Mishra

Author(s):  
Muhammad ◽  
R I Lestari ◽  
F Mulia ◽  
Y Ilhamsyah ◽  
Z Jalil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document