advective heat transport
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Bo Gao ◽  
Ethan T. Coon

Abstract. Permafrost degradation within a warming climate poses a significant environmental threat through both the permafrost carbon feedback and damage to human communities and infrastructure. Understanding this threat relies on better understanding and numerical representation of thermo-hydrological permafrost processes, and the subsequent accurate prediction of permafrost dynamics. All models include simplified assumptions, implying a tradeoff between model complexity and prediction accuracy. The main purpose of this work is to investigate this tradeoff when applying the following commonly made assumptions: (1) assuming equal density of ice and liquid water in frozen soil; (2) neglecting the effect of cryosuction in unsaturated freezing soil; and (3) neglecting advective heat transport during soil freezing and thaw. This study designed a set of 62 numerical experiments using the Advanced Terrestrial Simulator (ATS v1.2) to evaluate the effects of these choices on permafrost hydrological outputs, including both integrated and pointwise quantities. Simulations were conducted under different climate conditions and soil properties from three different sites in both column- and hillslope-scale configurations. Results showed that amongst the three physical assumptions, soil cryosuction is the most crucial yet commonly ignored process. Neglecting cryosuction, on average, can cause 10 % ~ 20 % error in predicting evaporation, 50 % ~ 60 % error in discharge, 10 % ~ 30 % error in thaw depth, and 10 % ~ 30 % error in soil temperature at 1 m beneath surface. The prediction error for subsurface temperature and water saturation is more obvious at hillslope scales due to the presence of lateral flux. By comparison, using equal ice-liquid density has a minor impact on most hydrological variables, but significantly affects soil water saturation with an averaged 5 % ~ 15 % error. Neglecting advective heat transport presents the least error, 5 % or even much lower, in most variables for a general Arctic tundra system, and can decrease the simulation time at hillslope scales by 40 % ~ 80 %. By challenging these commonly made assumptions, this work provides permafrost hydrology modelers important context for better choosing the appropriate process representation for a given modeling experiment.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
David P. Canova ◽  
Mark P. Fischer ◽  
Richard S. Jayne ◽  
Ryan M. Pollyea

We conducted numerical simulations of coupled fluid and heat transport in an offshore, buried salt diapir environment to determine the effects of advective heat transport and its relation to the so-called “salt chimney effect.” Model sets were designed to investigate (1) salt geometry, (2) depth-dependent permeability, (3) geologic heterogeneity, and (4) the relative influence of each of these factors. Results show that decreasing the dip of the diapir induces advective heat transfer up the side of the diapir, elevating temperatures in the basin. Depth-dependent permeability causes upwelling of warm waters in the basin, which we show to be more sensitive to basal heat flux than brine concentration. In these model scenarios, heat is advected up the side of the diapir in a narrower zone of upward-flowing warm water, while cool waters away from the diapir flank circulate deeper into the basin. The resulting fluid circulation pattern causes increased discharge at the diapir margin and fluid flow downward, above the crest of the diapir. Geologic heterogeneity decreases the overall effects of advective heat transfer. The presence of low permeability sealing horizons reduces the vertical extent of convection cells, and fluid flow is dominantly up the diapir flank. The combined effects of depth-dependent permeability coupled with geologic heterogeneity simulate several geologic phenomena that are reported in the literature. In this model scenario, conductive heat transfer dominates in the basal units, whereas advection of heat begins to affect the middle layers of the model and dominates the upper units. Convection cells split by sealing layers develop within the upper units. From our highly simplified models, we can predict that advective heat transport (i.e., thermal convection) likely dominates in the early phases of diapirism when sediments have not undergone significant compaction and retain high porosity and permeability. As the salt structures mature into more complex geometries, advection will diminish due to the increase in dip of the salt-sediment interface and the increased hydraulic heterogeneity due to complex stratigraphic architecture.


2016 ◽  
Author(s):  
David P. Canova ◽  
◽  
Mark P. Fischer ◽  
Ryan Pollyea ◽  
Rick Jayne

2015 ◽  
Vol 33 (2) ◽  
Author(s):  
Lívia Maria Barbosa Sancho ◽  
Luiz Paulo De Freitas Assad ◽  
Luiz Landau

ABSTRACT. This study evaluates how climate change might affect advective heat and volume transports in the South Atlantic Basin based on Intergovernmental Panel on Climate Change (IPCC) A1FI and B1 climate change scenarios projections. Using the Climatic Model 2.1 (CM2.1) results that were developed by the Geophysical Fluid Dynamics Laboratory (GFDL), integrated on the water column, analyses were conducted through two meridional sections and one zonal section of the study area (between 25◦S-70◦S and 70◦W-20◦E). The annual mean time series were analyzed using historical 100-year climate change scenarios. The analyses of the climate change experiment parameters were compared with those of the H2 climate scenario. The volume transport (VT) through the water column weakened of about 5% in average and the advective heat transport (HT) increased of about 22% at the Drake and Africa-Antarctic (AF-AA) passages at the end of the experiments. For the zonal section at 25◦S, direction oscillations were observed in the integrated VT through the water column due to velocity intensity variations of the water masses and a decrease of about 22% in the HT was observed. Thus, it was observed a decrease in the water and heat supplies at 25◦S due to the Drake and AF-AA VT behavior, which may alter deep circulation patterns.Keywords: water column analysis, advective heat transport, flow direction, Drake Passage, Africa-Antarctic passage.RESUMO. Baseado nas projeções dos cenários de mudanças climáticas A1FI e B1 do Painel Intergovernamental de Mudanc¸as Climáticas (IPCC), esse estudo avalia como as mudanças climáticas podem impactar os transportes advectivos de calor e volume na bacia do Atlântico Sul. Através de resultados gerados pelo Modelo Climático 2.1 (CM2.1) desenvolvido pelo Geophysical Fluid Dynamics Laboratory (GFDL), foram feitas análises através de duas seções meridionais e uma seção zonal na área de estudo (entre 25◦S-70◦S e 70◦W-20◦E) integradas na coluna d’água. Foram analisados campos prognósticos médios anuais referentes a experimentos com 100 anos de duração. As análises dos parâmetros dos experimentos de mudanças climáticas foram realizadas em comparação com o experimento clima (H2). O transporte de volume (TV) integrado na coluna d’água enfraqueceu aproximadamente 5%, enquanto o transporte advectivo de calor (TC) aumentou em torno de 22% no Drake e na Passagem África-Antártida (AF-AA) ao final dos experimentos. Para a seção em 25◦S, foram observadas oscilações de direção do fluxo devido a variações na intensidade das velocidades das massas d’água com um enfraquecimento médio de 22% para o TC. Adicionalmente, foi observada uma diminuição no suprimento de água em 25◦S devido ao comportamento do TV das demais seções, o que pode alterar os padrões de circulação profunda.Palavras-chave: análise na coluna d’água, transporte advectivo de calor, direção do fluxo, Passagem de Drake, passagem África-Antártida.


2015 ◽  
Vol 28 (10) ◽  
pp. 3943-3956 ◽  
Author(s):  
Martha W. Buckley ◽  
Rui M. Ponte ◽  
Gaël Forget ◽  
Patrick Heimbach

Abstract A recent state estimate covering the period 1992–2010 from the Estimating the Circulation and Climate of the Ocean (ECCO) project is utilized to quantify the roles of air–sea heat fluxes and advective heat transport convergences in setting upper-ocean heat content anomalies H in the North Atlantic Ocean on monthly to interannual time scales. Anomalies in (linear) advective heat transport convergences, as well as Ekman and geostrophic contributions, are decomposed into parts that are due to velocity variability, temperature variability, and their covariability. Ekman convergences are generally dominated by variability in Ekman mass transports, which reflect the instantaneous response to local wind forcing, except in the tropics, where variability in the temperature field plays a significant role. In contrast, both budget analyses and simple dynamical arguments demonstrate that geostrophic heat transport convergences that are due to temperature and velocity variability are anticorrelated, and thus their separate treatment is not insightful. In the interior of the subtropical gyre, the sum of air–sea heat fluxes and Ekman heat transport convergences is a reasonable measure of local atmospheric forcing, and such forcing explains the majority of H variability on all time scales resolved by ECCO. In contrast, in the Gulf Stream region and subpolar gyre, ocean dynamics are found to be important in setting H on interannual time scales. Air–sea heat fluxes damp anomalies created by the ocean and thus are not set by local atmospheric variability.


2013 ◽  
Vol 373 ◽  
pp. 65-74 ◽  
Author(s):  
G. Chiodini ◽  
C. Cardellini ◽  
S. Caliro ◽  
C. Chiarabba ◽  
F. Frondini

Sign in / Sign up

Export Citation Format

Share Document