An Abrupt Change in Tropospheric Temperature Gradient and Moisture Transport Over East Asia in the Late 1990s

2018 ◽  
Vol 56 (4) ◽  
pp. 268-276 ◽  
Author(s):  
B.H. Vaid ◽  
X. San Liang
2021 ◽  
Author(s):  
Yinghan Sang ◽  
Hong-Li Ren ◽  
Yi Deng ◽  
Xiaofeng Xu ◽  
Xueli Shi ◽  
...  

Abstract This paper reports findings from a diagnostic and modeling analysis that investigates the impact of the late-spring soil moisture anomaly over North Eurasia on the boreal summer rainfall over northern East Asia (NEA). Soil moisture in May in the region from the Kara-Laptev Sea coasts to Central Siberian Plateau is found to be negatively correlated with the summer rainfall from Mongolia to Northeast China. The atmospheric circulation anomalies associated with the anomalously dry soil are characterized by a pressure dipole with the high-pressure center located over North Eurasia and the low-pressure center over NEA, where an anomalous lower-level moisture convergence occurs, favoring rainfall formation. Diagnoses and Modeling experiments demonstrate that the effect of the spring low soil moisture over North Eurasia may persist into the following summer through modulating local surface latent and sensible heat fluxes, increasing low-level air temperature at higher latitudes, and effectively reducing the meridional temperature gradient. The weakened temperature gradient could induce the decreased zonal wind and the generation of a low-pressure center over NEA, associated with a favorable condition of local synoptic activity. The above relationships and mechanisms are vice versa for the prior wetter soil and decreased NEA rainfall. These findings suggest that soil moisture anomalies over North Eurasia may act as a new precursor providing an additional predictability source for better predicting the summer rainfall in NEA.


2015 ◽  
Vol 28 (11) ◽  
pp. 4330-4356 ◽  
Author(s):  
Jesse A. Day ◽  
Inez Fung ◽  
Camille Risi

Abstract The concept of the “Asian monsoon” masks the existence of two separate summer rainfall régimes: convective storms over India, Bangladesh, and Nepal (the South Asian monsoon) and frontal rainfall over China, Japan, and the Korean Peninsula (the East Asian monsoon). In addition, the Himalayas and other orography, including the Arakan Mountains, Ghats, and Yunnan Plateau, create smaller precipitation domains with abrupt boundaries. A mode of continental precipitation variability is identified that spans both South and East Asia during July and August. Point-to-point correlations and EOF analysis with Asian Precipitation–Highly-Resolved Observational Data Integration Toward Evaluation of the Water Resources (APHRODITE), a 57-yr rain gauge record, show that a dipole between the Himalayan foothills (+) and the “monsoon zone” (central India, −) dominates July–August interannual variability in South Asia, and is also associated in East Asia with a tripole between the Yangtze corridor (+) and northern and southern China (−). July–August storm tracks, as shown by lag–lead correlation of rainfall, remain mostly constant between years and do not explain this mode. Instead, it is proposed that interannual change in the strength of moisture transport from the Bay of Bengal to the Yangtze corridor across the northern Yunnan Plateau induces widespread precipitation anomalies. Abundant moisture transport along this route requires both cyclonic monsoon circulation over India and a sufficiently warm Bay of Bengal, which coincide only in July and August. Preliminary results from the LMDZ version 5 (LMDZ5) model, run with a zoomed grid over Asia and circulation nudged toward the ECMWF reanalysis, support this hypothesis. Improved understanding of this coupling may help to project twenty-first-century precipitation changes in East and South Asia, home to over three billion people.


2010 ◽  
Vol 23 (15) ◽  
pp. 4255-4262 ◽  
Author(s):  
Yueqing Li ◽  
Song Yang

Abstract A new index measuring the East Asian winter monsoon is defined using the mean wind shears of upper-tropospheric zonal wind based on the belief that the physical processes of both higher and lower latitudes, and at both lower and upper troposphere, should be considered to depict the variability of monsoon. When the index is high (low), the westerly jet is strong (weak), the East Asian trough is deep (shallow), the Siberian high is strong (weak), and anomalous low-level northerlies (southerlies) prevail over East Asia. As a result, the surface and lower-tropospheric temperature over East Asia decreases (increases) and the cold surges over Southeast Asia and tropical western Pacific are more (less) active. The index, which exhibits distinct interannual variations, is also strongly correlated with the Arctic Oscillation and Niño-3.4 sea surface temperature (SST) index. Compared to previous indexes, this index takes into account more influencing factors and better elucidates the physical processes associated with monsoon, enhancing interpretations of the variability of monsoon and its effects on regional weather and climate. Furthermore, the monsoon index is significantly linked to antecedent tropical Pacific SST and is highly predictable in the NCEP Climate Forecast System, indicating the advantage of the index for operational predictions of monsoon.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dan Chen ◽  
Sulan Nan ◽  
Ge Liu ◽  
Changyan Zhou ◽  
Renrui Shi ◽  
...  

We investigated the relationship between the spring tropospheric temperature over the Tibetan Plateau (TPT) and summer precipitation in eastern China on an interannual timescale using the monthly mean ERA-Interim reanalysis dataset, the HadISST dataset and the daily mean precipitation dataset for China. We found that there is a significant positive correlation between the spring TPT and summer precipitation in the North China−Hetao region. The relationship is manifested in the context of the East Asia–Pacific pattern teleconnection. In the high spring TPT index years, the geopotential height anomalies over East Asia and the western North Pacific present a negative phase of the East Asia–Pacific pattern teleconnection in the subsequent summer. This circulation pattern is beneficial for the water vapor transport from the western Pacific to inland, which further transport to the North China−Hetao region from the Yangtze River–Yellow rivers region. Anomalous upward motion occurs in the North China–Hetao region, which increases precipitation. The East Asian subtropical westerly jet shifts further north and the South Asian high weakens and shrinks westward. These conditions all favor an increase in precipitation over the North China–Hetao region. The spring TPT plays an important part in the prediction of summer precipitation in the North China−Hetao region. The improvement in the use of the spring TPT to predict summer precipitation in the North China–Hetao region is examined by comparing the prediction equations with and without the prediction factor of the spring TPT on the basis of the sea surface temperatures in key regions. After considering the impact of the spring TPT, the explanatory variance of the prediction equation for precipitation in the North China–Hetao region increases by 17.3%.


Sign in / Sign up

Export Citation Format

Share Document