scholarly journals Weakening of lower tropospheric temperature gradient between Indian landmass and neighbouring oceans and its impact on Indian monsoon

2009 ◽  
Vol 118 (4) ◽  
pp. 273-280 ◽  
Author(s):  
S. M. Bawiskar
2013 ◽  
Vol 26 (7) ◽  
pp. 2279-2287 ◽  
Author(s):  
William R. Boos ◽  
John V. Hurley

Abstract Here it is shown that almost all models participating in the Coupled Model Intercomparison Project (CMIP) exhibit a common bias in the thermodynamic structure of boreal summer monsoons. The strongest bias lies over South Asia, where the upper-tropospheric temperature maximum is too weak, is shifted southeast of its observed location, and does not extend as far west over Africa as it does in observations. Simulated Asian maxima of surface air moist static energy are also too weak and are located over coastal oceans rather than in their observed continental position. The spatial structure of this bias suggests that it is caused by an overly smoothed representation of topography west of the Tibetan Plateau, which allows dry air from the deserts of western Asia to penetrate the monsoon thermal maximum, suppressing moist convection and cooling the upper troposphere. In a climate model with a decent representation of the thermodynamic state of the Asian monsoon, the qualitative characteristics of this bias can be recreated by truncating topography just west of the Tibetan Plateau. This relatively minor topographic modification also produces a negative anomaly of Indian precipitation of similar sign and amplitude to the CMIP continental Indian monsoon precipitation bias. Furthermore, in simulations of next-century climate warming, this topographic modification reduces the amplitude of the increase in Indian monsoon precipitation. These results confirm the importance of topography west of the Tibetan Plateau for South Asian climate and illustrate the need for careful assessments of the thermodynamic state of model monsoons.


2021 ◽  
Vol 3 ◽  
Author(s):  
Adway Mitra

South Asian monsoon is a phenomena that plays out during June-September every year, due to the northward shift of the ITCZ which causes heavy rainfall over many countries of South Asia, including India. These rains are directly related to the lives and economic well-being of over a billion people. Indian monsoon is highly heterogeneous, due to the vast physiographic variations across the country. There is considerable interest among scientists and other stake-holders about possible future changes to Indian monsoon due to worldwide climate change. Simulations of future climate by global climate models under various scenarios can provide important clues for this. However, simulations of Indian monsoon in the historical period by global climate models under the CMIP5 family were found to be inaccurate in several aspects. Simulations by the new global climate models from the CMIP6 family are now available, and scientists are evaluating their ability to simulate Indian monsoon. In this work, we focus on one particular aspect of simulations by these models: the spatial distribution over daily rainfall over the Indian landmass during monsoon. We use a Machine Learning based probabilistic graphical model that can identify frequent spatial patterns of rainfall after creating a binary representation of rainfall. This model also helps us to identify spatial clusters, i.e., homogeneous regions within the Indian landmass with similar temporal characteristics of rainfall. We identify such frequent spatial patterns and spatial clusters from observed monsoon rainfall data, and also from simulations of monsoon rainfall by different CMIP6 models during the period 2000–2014. We evaluate the models by comparing the patterns and clusters identified from their simulations with those identified from observed data. We find that some of the CMIP6 models can simulate the spatial distribution of monsoon rainfall to a reasonable degree, but there are various limitations—most models underestimate extreme rainfall events and are unable to reproduce the regions of the landmass that are homogeneous with respect to rainfall.


Author(s):  
B.N. Goswami ◽  
Soumi Chakravorty

Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.


2016 ◽  
Vol 73 (4) ◽  
pp. 1709-1726 ◽  
Author(s):  
Janni Yuval ◽  
Yohai Kaspi

Abstract The relation between the mean meridional temperature gradient and eddy fluxes has been addressed by several eddy flux closure theories. However, these theories give little information on the dependence of eddy fluxes on the vertical structure of the temperature gradient. The response of eddies to changes in the vertical structure of the temperature gradient is especially interesting since global circulation models suggest that as a result of greenhouse warming, the lower-tropospheric temperature gradient will decrease whereas the upper-tropospheric temperature gradient will increase. The effects of the vertical structure of baroclinicity on atmospheric circulation, particularly on the eddy activity, are investigated. An idealized global circulation model with a modified Newtonian relaxation scheme is used. The scheme allows the authors to obtain a heating profile that produces a predetermined mean temperature profile and to study the response of eddy activity to changes in the vertical structure of baroclinicity. The results indicate that eddy activity is more sensitive to temperature gradient changes in the upper troposphere. It is suggested that the larger eddy sensitivity to the upper-tropospheric temperature gradient is a consequence of large baroclinicity concentrated in upper levels. This result is consistent with a 1D Eady-like model with nonuniform shear showing more sensitivity to shear changes in regions of larger baroclinicity. In some cases, an increased temperature gradient at lower-tropospheric levels might decrease the eddy kinetic energy, and it is demonstrated that this might be related to the midwinter minimum in eddy kinetic energy observed above the northern Pacific.


2005 ◽  
Vol 18 (24) ◽  
pp. 5312-5329 ◽  
Author(s):  
Benjamin R. Lintner ◽  
John C. H. Chiang

Abstract The applicability of a weak temperature gradient (WTG) formulation for the reorganization of tropical climate during El Niño–Southern Oscillation (ENSO) events is investigated. This idealized dynamical framework solves for the divergent portion of the tropical circulation by assuming a spatially homogeneous perturbation temperature profile and a mass balance constraint applied over the tropical belt. An intermediate-level complexity model [the Quasi-Equilibrium Tropical Circulation Model (QTCM)] configured with the WTG assumptions is used to simulate El Niño conditions and is found to yield an appropriate level of tropospheric warming, a plausible pattern of precipitation anomalies in the tropical Pacific source region of El Niño, and a gross precipitation deficit over the Tropics outside the Pacific (hereafter the “remote Tropics”). Additional tests of the WTG framework with La Niña forcing conditions and enhanced greenhouse gas concentrations support its applicability. However, the ENSO response under the WTG framework fails in some respects when compared to the standard QTCM: in particular, some regional features of the anomalous precipitation response, especially in the remote Tropics, differ markedly between the two model versions. These discrepancies appear to originate in part from the lack of anomalous tropospheric temperature gradients (and circulations) in the framework presented here. Nevertheless, the WTG approach appears to be a useful lowest-order model for the tropical climate adjustment to ENSO. The WTG framework is also used to argue that El Niño may not represent a good proxy for tropical rainfall changes under greenhouse gas warming scenarios because the large-scale subsidence occurring with the tropospheric warming in the El Niño scenario has an effect on rainfall that is distinct from the effect of increased tropospheric temperatures common to both the greenhouse gas warming and El Niño scenarios.


2020 ◽  
Vol 77 (8) ◽  
pp. 2835-2846 ◽  
Author(s):  
Richard Newton ◽  
William Randel

Abstract High-vertical-resolution temperature measurements from GPS radio occultation data show frequent upper-tropospheric inversions over the equatorial Indian Ocean during the summer monsoon season. Each year, around 30% of profiles in this region have temperature inversions near 15 km during the monsoon season, peaking during July–September. This work describes the space–time behavior of these inversions, and their links to transient deep convection. The Indian Ocean inversions occur episodically several times each summer, with a time scale of 1–2 weeks, and are quasi stationary or slowly eastward moving. Strong inversions are characterized by cold anomalies in the upper-troposphere (12–15 km), warm anomalies in the tropopause layer (16–18 km), and strong zonal wind anomalies that are coherent with temperature anomalies. Temperature and wind anomalies are centered over the equator and show a characteristic eastward phase tilt with height with a vertical wavelength near 5 km, consistent with a Kelvin wave structure. Composites of outgoing longwave radiation (OLR) show that strong inversions are linked to enhanced deep convection over the equatorial Indian Ocean, preceding the inversions by ~2–6 days. These characteristics suggest that the inversions are linked to convectively forced Kelvin waves, which are Doppler shifted by the easterly monsoonal winds such that they remain quasi stationary in the equatorial Indian Ocean. These large-scale waves influence circulation on the equatorial side of the Indian monsoon anticyclone; they may provide a positive feedback to the underlying convection, and are possibly linked with regions of shear-induced turbulence.


2021 ◽  
pp. 1-42
Author(s):  
Boqi Liu ◽  
Congwen Zhu

AbstractThe onset of the South China Sea summer monsoon (SCSSM) has traditionally been ascribed to the El Niño–Southern Oscillation (ENSO) on an interannual timescale, but the two do not correspond in some years. The present study applies harmonic analysis on the meridional temperature gradient (MTG) in mid–upper troposphere over South China Sea (SCS) and decomposes the onset process to be a slow-varying seasonal cycle and transient subseasonal component. The ENSO-related air temperature anomaly in the southern SCS provides seasonal predictability of SCSSM onset by a stable and robust relationship between ENSO and MTG seasonal cycle. However, in the northern SCS, the MTG is regulated by an intraseasonal oscillation (ISO) of extratropical air temperature with a significant 10–30-day period. This ISO originates over the western TP, then propagates eastward and gets enhanced by anomalous diabatic heating due to spring rainfall anomaly over South China, as a result of subseasonal thermal forcing of TP. When the ISO arrives to the north of the SCS, it directly changes the tropospheric temperature to modulate the MTG. Meanwhile, the upper-level circulation associated with the ISO alters the meridional potential vorticity advection and pumping effect, followed by the anomalous low-level westerly wind and monsoon convection over the SCS. The SCSSM onset is evidently disrupted from its seasonal cycle when this ISO is more active. Since the independence of its intensity from ENSO, this extratropical ISO over TP and South China provides additional subseasonal predictability of the onset dates of the SCSSM.


Sign in / Sign up

Export Citation Format

Share Document