Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001–2017

2019 ◽  
Vol 41 (3) ◽  
pp. 392-402 ◽  
Author(s):  
Allen G. Xue ◽  
Yuanhong Chen ◽  
Keith Seifert ◽  
Wei Guo ◽  
Barbara A. Blackwell ◽  
...  
Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 164-169 ◽  
Author(s):  
M. R. Fernandez ◽  
Y. Chen

Most of the Fusarium species responsible for Fusarium head blight of wheat in Saskatchewan, Canada, have also been isolated from discolored subcrown internodes/crowns of wheat. It was therefore of interest to compare the susceptibility of heads and ground/underground tissue of wheat to isolates of Fusarium species from different sources. Controlled-environment pathogenicity tests were conducted on heads, seeds, and seedlings of spring wheat. Overall, F. culmorum and F. graminearum were the most pathogenic species, although the former was more pathogenic than the latter. F. equiseti and F. poae were the least pathogenic species, whereas F. avenaceum had intermediate pathogenicity in the head and seed tests, but low pathogenicity in the seedling test. There was a similar pathogenicity among isolates of each Fusarium species from different sources to heads and ground/underground plant parts, indicating a lack of adaptation of these isolates. Our observations suggest that Fusarium inoculum on or in infected seed or plant debris might infect plants at or below soil level, which could then become a source of inoculum for infection of heads in the following season(s). Survival of fungal inoculum in underground plant parts might be important during dry conditions.


2020 ◽  
pp. 1-14
Author(s):  
I.S. Hofgaard ◽  
H.U. Aamot ◽  
T. Seehusen ◽  
H. Riley ◽  
R. Dill-Macky ◽  
...  

To mitigate the risk of erosion and nutrient runoff, reduced tillage has become more prevalent in Norway. Within within recent decades, there have been some years with relatively high occurrence of Fusarium head blight and mycotoxins in Norwegian cereal grain. This is thought to have been caused by an increased inoculum potential (IP) of Fusarium spp. due to larger amount of crop residues remaining on the soil surface, in combination with weather conditions promoting fungal growth and infection of cereal plants. The objective of this work was to elucidate the influence of different tillage practices on the IP of Fusarium spp. and the subsequent Fusarium-infection and mycotoxin contamination of spring wheat grain at harvest. Tillage trials were conducted at two locations in southeast Norway (Solør and Toten) over three years, 2010-2012. Residues of wheat from the previous year were collected in spring. Fusarium avenaceum and Fusarium graminearum were the most common Fusarium species recorded on wheat straw residues. IP was calculated as the percentage of the residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. The IP of Fusarium spp. was lower in ploughed plots compared to those tilled with harrowing only. Ploughing in spring resulted in a similarly low IP as autumn ploughing. In contrast, harrowing in autumn generally reduced IP more than did spring harrowing. The mycotoxin levels in the harvested wheat were generally low, except for deoxynivalenol at high levels in Solør 2011. Despite a lower IP of ploughed versus harrowed plots, this was not reflected in the content of Fusarium and mycotoxins in harvested grain. The Fusarium species that dominated in the residues examined in this study were the same as those detected in the harvested grain, supporting the finding that residues are an important source of inoculum.


2018 ◽  
Vol 19 (2) ◽  
pp. 125-127 ◽  
Author(s):  
Kaitlyn M. Bissonnette ◽  
Philip Wharton ◽  
Jianli Chen ◽  
Juliet M. Marshall

In Idaho, losses due to Fusarium head blight (FHB) of spring wheat (Triticum aestivum) have been infrequent and have historically been dominated by Fusarium culmorum (Wm. G. Sm.) Sacc. However, the incidence of FHB and deoxynivalenol-contaminated grain has increased in spring wheat in southeastern Idaho since 2009, indicating that other species of Fusarium may be contributing to disease. In 2011 and 2012, 17 spring wheat fields were scouted and sampled for FHB in southern Idaho. Contaminated grains were cultured, and putative Fusarium isolates were identified using species-specific polymerase chain reaction. In 2011, 87% of all recovered isolates were identified as F. graminearum, whereas only 13% were identified as F. culmorum. Of the isolates collected in 2012, 51% were identified as F. graminearum and 49% as F. culmorum. In both years, more F. graminearum isolates were recovered as compared to a survey conducted in 1984. Implementation of effective disease management practices will be necessary to minimize the establishment and spread of F. graminearum–responsible FHB in southeastern Idaho.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 642
Author(s):  
Yuliia Kochiieru ◽  
Audronė Mankevičienė ◽  
Jurgita Cesevičienė ◽  
Roma Semaškienė ◽  
Jūratė Ramanauskienė ◽  
...  

In this work, we studied the impact of harvesting time on Fusarium mycotoxin occurrence in spring wheat and the effect of mycotoxin contamination on the quality of these grains. The spring wheat grains (Triticum aestivum L.) were collected in 2016–2018 when the crop had reached full maturity, 10 ± 2 days and 17 ± 3 days after full maturity. The grain samples were analyzed for Fusarium infection and co-contamination with mycotoxins deoxynivalenol (DON), zearalenone (ZEA), and T-2 toxin (T-2), as well as the quality of the wheat grains (mass per hectolitre, contents of protein, starch, ash and fat, particle size index (PSI), falling number, sedimentation, wet gluten content, and gluten index). The occurrence of Fusarium spp. fungi and the mycotoxins produced by them in the grains was mostly influenced by the harvesting time and meteorological conditions. The correlations between Fusarium species and the mycotoxins produced by them in the grains of spring wheat showed F. graminearum to be a dominant species, and as a result, higher concentrations of DON and ZEA were determined. The co-occurrence of all the three mycotoxins analyzed (deoxynivalenol, zearalenone, and T-2 toxin) was identified in wheat. In rainy years, a delay in harvesting resulted in diminished grain quality of spring wheat, as indicated by grain mass per hectolitre and falling number. Negative correlations were found in highly contaminated grains between mycotoxins (DON, ZEA, and T-2) and falling number and grain mass per hectolitre values.


Author(s):  
David F. Garvin ◽  
Linda Dykes

AbstractWheat (Triticum aestivum L.) breeding involves improvement of a wide range of traits. However, selection for these traits is only acceptable if the end use quality of the wheat is not compromised. In hard red spring wheat, the predominant end use of flour is bread. In this study, milling and baking quality characteristics were compared in the hard red spring wheat ‘Apogee’ and a near-isogenic line of Apogee (‘A30’) that contains a spontaneous segmental deletion of the long arm of chromosome arm 3DL that is associated with enhanced resistance to Fusarium head blight caused by the fungal pathogen Fusarium graminearum (Schwabe). Apogee and A30 were grown together in replicated greenhouse experiments, and the resultant grain was used to compare a diverse spectrum of grain characteristics and milling and baking properties of the grain in the two wheat genotypes. The major difference detected was a significant increase in protein content in A30, which had nearly 21% more flour protein than Apogee. This difference did not affect any of the flour properties or baking characteristics evaluated, suggesting that the increased protein concentrations in A30 are not associated with the principal seed storage properties associated with baking quality. These results indicate that despite the size of the deletion in A30, no key genes associated with end use quality are located on that chromosome segment. The deletion may therefore find use in efforts to enhance Fusarium head blight in hard red spring wheat.


2009 ◽  
Vol 89 (6) ◽  
pp. 1099-1106 ◽  
Author(s):  
R S Sadasivaiah ◽  
R J Graf ◽  
H S Randhawa ◽  
B L Beres ◽  
S M Perkovic ◽  
...  

Sadash is a soft white spring wheat (Triticum aestivum L.) that meets the end-use quality specifications of the Canada Western Soft White Spring class. Sadash is well-adapted to the wheat-growing regions of southern Alberta and southern Saskatchewan. Based on data from the Western Soft White Spring Wheat Cooperative Registration Test from 2003 to 2005, Sadash exhibited high grain yield, mid-season maturity, semi-dwarf stature with very strong straw, and good resistance to shattering. Sadash expressed resistance to the prevalent races of stem rust and powdery mildew, intermediate resistance to loose smut, moderate susceptibility to leaf rust and common bunt, and susceptibility to Fusarium head blight. Based on end-use quality analysis performed at the Grain Research Laboratory of the Canadian Grain Commission, Sadash had improved test weight over the check cultivars AC Reed and AC Phil and similar milling and baking performance.Key words: Triticum aestivum L., cultivar description, wheat (soft white spring), grain yield, quality, disease resistance


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1339-1348 ◽  
Author(s):  
C. R. Hollingsworth ◽  
C. D. Motteberg ◽  
J. V. Wiersma ◽  
L. M. Atkinson

Spring wheat (Triticum aestivum) crop losses in the Red River Valley of Minnesota and North Dakota caused by Fusarium head blight (FHB) epidemics incited by Fusarium graminearum are common. Fungicide application is often recommended when environments promote disease development but benefits have not been fully evaluated when environment, cultivar resistance, and economic outcome are considered. Agronomic and economic characters were determined for cultivars with various resistance levels when treated with no fungicide; propiconazole at 63 g active ingredient (a.i.)/ha applied at Feekes growth stage (FGS) 2, tebuconazole at 126 g a.i./ha applied at FGS 10.51, or propiconazole at 63 g a.i./ha applied at FGS 2 followed by tebuconazole at 126 g a.i./ha applied at FGS 10.51. Revenue returned from FHB moderately susceptible (MS) cultivars was 8% greater than moderately resistant (MR) cultivars in low-disease environs but differences were not significant when disease was moderate. Deoxynivalenol accumulation in grain of MS and MR cultivars was unchanged by fungicide treatment. MS cultivars were economically more adventitious to grow than MR cultivars in both disease environments.


Author(s):  
Andrew James Burt ◽  
D.G. Humphreys ◽  
J. Mitchell Fetch ◽  
Denis Green ◽  
Thomas Fetch ◽  
...  

AAC Redstar is an early maturing, high yielding hard red spring wheat (Triticum aestivum L.) cultivar that is well adapted to the northern Canadian Prairies and eligible for grades of Canada Western Red Spring (CWRS) wheat. Over three years (2016-2018) of testing in the Parkland Wheat Cooperative registration trials, AAC Redstar was 11% higher yielding than AC Splendor, 6% higher than Parata, and 4% higher than Glenn and Carberry. AAC Redstar matured 3 days earlier than Glenn, 2 days earlier than Carberry and had similar maturity to Parata. AAC Redstar was shorter than all checks except Carberry and had better lodging resistance compared to all the check cultivars in the registration trial. The test weight and thousand kernel weight of AAC Redstar were similar to Carberry. The grain protein concentration of AAC Redstar was 0.2% lower than Carberry. AAC Redstar was rated moderately resistant to Fusarium head blight, leaf rust, stripe rust and common bunt. AAC Redstar had resistant reactions to loose smut, and stem rust. AAC Redstar was registered under the CWRS market class.


2018 ◽  
Vol 7 (3) ◽  
pp. 63
Author(s):  
Shuhui Xu ◽  
Junjie Yu ◽  
Yanhong Chen ◽  
Mirko Tabori ◽  
Xuelian Wang ◽  
...  

Twenty-three selected advanced spring wheat (Triticum aestivum L.) lines from Ottawa Research and Development Centre (ORDC) were compared with four known cultivars for agronomic performance at eight sites in 2016 (Ottawa CEF-C1, Ottawa CEF-C2, St. Isidore, Harrington, Palmerston, Princeville, Kincardine, Beloeil) in Eastern Canada, and for fusarium head blight (FHB). The reaction of these lines to six races of LR was determined in a growth cabinet and the LR susceptible cultivar ‘Morocco’ was included as the control for disease development in these trials. The majority of the selected lines showed no significant differences compared to four check cultivars, however ECSW05 and ECSW48, showed higher yield, moderate resistance to FHB and resistance to most of the tested LR races. Lines ECSW05 and ECSW48 will be advanced to grower’s trials in eastern Canada in 2018 and may be used as sources of resistance to LR for future cultivar development in Eastern Canada.


Sign in / Sign up

Export Citation Format

Share Document