scholarly journals Drying Kinetics, Energy Consumption, and Quality of Paddy (MAR-219) during Drying by the Industrial Inclined Bed Dryer with or without the Fluidized Bed Dryer

2013 ◽  
Vol 31 (3) ◽  
pp. 286-294 ◽  
Author(s):  
M. S. H. Sarker ◽  
M. N. Ibrahim ◽  
N. Ab Aziz ◽  
Mohd Salleh Punan
Author(s):  
Sueli Rodrigues ◽  
Thatyane Vidal Fonteles ◽  
Ronnyely Braz Reis Do Nascimento ◽  
Fabiano Andre Narciso Fernandes

Fluidized bed drying is a method for controlled and mild drying of wetThis study aimed to evaluate the effects of ozone pretreatment on drying of green apple carried out in a fluidized bed dryer to determine drying kinetics and identify operating parameters for improved product quality. Results reveal that drying temperature in different levels affected water diffusivity and retention of bioactive compounds. The ozone pretreatment showed unexpected results since the pretreatment reduced the water difusivity and promoted an increase in the enzyme activity. The treatment time strongly afftected the final polyphenoloxidase and peroxidase activities. On the other hand, the ozone treatment resulted in lower color changes compared to non-ozone treated dried apples.Keywords: diffusivity; polyphenoloxidase; enzymatic browning; ozone.


2005 ◽  
Vol 66 (2) ◽  
pp. 267-271 ◽  
Author(s):  
Chalida Niamnuy ◽  
Sakamon Devahastin

2008 ◽  
Vol 4 (6) ◽  
Author(s):  
Law Chung Lim ◽  
Wan Ramli Wan Daud

Advanced drying technology enables drying of rough rice and dedusting of rice husks to be carried out simultaneously in the same unit processor. This paper reports the efficiency of dedusting of rice husks in a two-stage inclined cross flow fluidized bed dryer and the drying kinetics of rough rice in a batch fluidized bed dryer as well as the conceptual design of a hybrid drying – dedusting unit processor. Experimental works had been carried out using rough rice (a Group D particle according to Geldart classification of powders) in a 2.5 m height two-stage inclined fluidized bed column of cross sectional area of 0.61m x 0.15m and a 3 m high batch fluidized bed dryer. The objectives of the study was to investigate the separation efficiency of dedusting of rice husks in the two-stage cross flow fluidized bed dryer and to study the drying kinetics of rough rice drying in the batch fluidized bed dryer. The experimental results showed that the dedusting separation efficiency at low superficial gas velocity gave unsatisfactory separation of merely 40% of rice husks. At higher superficial gas velocity, separation efficiency of rice husks as high as 93% was achieved. In addition, higher distributor inclination angle gave slightly improved separation efficiency. The drying kinetics showed that the residence time that is required to reduce the moisture content of rough rice to 18% (intermediate storage moisture content for second stage drying) is 3 minutes whereas the residence time that is required to reduce the moisture content to 13% (desirable final moisture content) is approximately 10 minutes regardless of the effect of kernel cracking. It was also found that higher drying temperatures gave higher drying rate. A conceptual design has been developed based on the results obtained in the studies. In order to maximize the heat utilization and to carry out two processes viz. dedusting and drying in one unit processor, it is suggested that drying – dedusting can be carried out in a multistage mode where drying is taken place at each stage while dedusting is taking place at the upper stage. This concept can be applied to a packed bed or a fluidized bed unit processor.


REAKTOR ◽  
2011 ◽  
Vol 13 (3) ◽  
pp. 155 ◽  
Author(s):  
Abadi Jading ◽  
Eduard Tethool ◽  
Paulus Payung ◽  
Sarman Gultom

PHYSICOCHEMICAL CHARACTERISTICS OF SAGO STARCH OBTAINED FROM FLUIDIZED BED DRYING USING SOLAR AND BIOMASS POWERED CROSS FLOW FLUIDIZED BED DRYER. The research aim is to study the comparative quality of sago starch drying results using cross flow fluidized bed dryer powered by solar and biomass in conventional drying, particularly the chemical composition and physicochemical characteristics. This research was conducted through a drying phase of wet sago starch using a cross flow fluidized bed dryer, and drying in conventional as well as dried sago starch quality testing results are drying. The results of this study indicate that dry sago starch which has been drained by means of cross flow fluidized bed dryer has a chemical composition that does not vary much with starch which is dried by conventional drying, so that the dried sago starch produced by the dryer is very good. On the other hand the use of dryers is the more correct because the physicochemical properties of sago starch using a low drying temperature and drying time is short. Tujuan penelitian ini adalah mempelajari perbandingan kualitas pati sagu hasil pengeringan menggunakan alat pengering cross flow fluidized bed bertenaga surya dan biomassa dengan pengeringan secara konvensional, khususnya komposisi kimia dan karakteristik fisikokimia. Penelitian ini dilakukan melalui beberapa tahapan yaitu pengeringan pati sagu basah menggunakan alat pengering cross flow fluidized bed, pengeringan secara konvensional serta pengujian kualitas pati sagu kering hasil pengeringan. Hasil dari penelitian ini menunjukkan bahwa pati sagu kering yang telah dikeringkan dengan alat pengering cross flow fluidized bed memiliki komposisi kimia yang tidak berbeda jauh dengan pati yang dikeringkan dengan cara pengeringan secara konvensional, sehingga pati sagu kering yang dihasilkan oleh alat pengering tersebut sangat baik. Di sisi lain penggunaan alat pengering ini semakin memperbaiki sifat fisikokimia pati sagu sebab menggunakan suhu pengeringan yang rendah dan waktu pengeringan yang singkat.   Kata Kunci: pengering unggun terfluidakan; fisikokimia; pati sagu


Author(s):  
M Yahya ◽  
Hendriwan Fahmi ◽  
Syafrul Hadi ◽  
Edison Edison

The performance of a fluidized bed dryer integrated biomass furnace with air preheater (FBD with APH) and a fluidized bed dryer integrated biomass furnace without air preheater (FBD without APH) for drying of paddy  have been evaluated. The  FBD with APH and FBD without APH decreased the moisture of paddy from 24% (wet basis) to 14% (wet basis) within 43 and 47 minutes with average temperatures and relative humidities of 59.58 <sup>o</sup>C and 59.14<sup>o</sup>C, and 18.81% and 18.68%, respectively. The drying rate of paddy varied in the range of 0.11 kg/min-0.32 kg/min and 0.10 kg/min- 0.30 kg/min for FBD with APH and FBD without APH, with average values of 0.18kg/min and 0.17kg/min, respectively. The minimum, maximum, and average value specific moisture evaporation rate (SMER) was  0.20 kg/kWh, 0.57 kg/kWh, and 0.31 kg/kWh, respectively for FBD with APH, as well as 0.149 kg/kWh, 0.448 kg/kWh, and 0.252  kg/kWh, respectively, for FBD without APH.  The specific energy consumption (SEC), the specific electrical energy consumption (SEEC), and the specific thermal energy consumption (STEC) were varied from 1.749 kWh/kg to 5.076 kWh/kg, 0.090 kWh/kg to 2.872 kWh/kg, and 0.760 kWh/kg to 2.204 kWh/kg, with average values of 3.528 kWh/kg, 1.96 kWh/kg, and 1.532 kWh/kg, respectively for FBD with APH, as well as from 2.234 kWh/kg to 6.702 kWh/kg, 1.056 kWh/kg to 3.167 kWh/kg, and 1.179 kWh/kg to 3.536 kWh/kg, with average values of 4.391 kWh/kg, 2.075 kWh/kg, and 2.316 kWh/kg, respectively, for FBD without APH. The thermal efficiencies of the FBD with APH and  FBD without APH were varied between 12.4% and 37.93%, and 9.78% and 29.82%, resvectively, with average values of 20.78% and 16.61%. The thermal efficiency of FBD with APH was higher compared to FBD without APH.


2016 ◽  
Vol 35 (6) ◽  
pp. 723-730 ◽  
Author(s):  
Mohammad Arabi ◽  
Mohammad Mehdi Faezipour ◽  
Mohammad Layeghi ◽  
Majid Khanali ◽  
Hamid Zareahosseinabadi

2007 ◽  
Vol 79 (2) ◽  
pp. 695-705 ◽  
Author(s):  
S.M. Tasirin ◽  
S.K. Kamarudin ◽  
K. Jaafar ◽  
K.F. Lee

2015 ◽  
Vol 39 (2) ◽  
pp. 98-108 ◽  
Author(s):  
S.M. Jafari ◽  
V. Ghanbari ◽  
M. Ganje ◽  
D. Dehnad

Sign in / Sign up

Export Citation Format

Share Document