In silico investigations of some Cyperus rotundus compounds as potential anti-inflammatory inhibitors of 5-LO and LTA4H enzymes

Author(s):  
Fares Fenanir ◽  
Abderrahmane Semmeq ◽  
Yacine Benguerba ◽  
Michael Badawi ◽  
Marie-Antoinette Dziurla ◽  
...  
2021 ◽  
pp. 105068
Author(s):  
Devendra Kumar ◽  
Ravi Ranjan Kumar ◽  
Shelly Pathania ◽  
Pankaj Kumar Singh ◽  
Sourav Kalra ◽  
...  

LWT ◽  
2020 ◽  
Vol 131 ◽  
pp. 109817
Author(s):  
Yakun Hou ◽  
Alan Carne ◽  
Michelle McConnell ◽  
Sonya Mros ◽  
Adnan A. Bekhit ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0156156 ◽  
Author(s):  
Sajad Shahbazi ◽  
Tammanna R. Sahrawat ◽  
Monalisa Ray ◽  
Swagatika Dash ◽  
Dattatreya Kar ◽  
...  

2017 ◽  
Vol 27 (16) ◽  
pp. 3806-3811 ◽  
Author(s):  
Devirammanahalli Mahadevaswamy Lokeshwari ◽  
Dileep Kumar Achutha ◽  
Bharath Srinivasan ◽  
Naveen Shivalingegowda ◽  
Lokanath Neratur Krishnappagowda ◽  
...  

Author(s):  
Sarath Sasi Kumar ◽  
Anjali T

Objective: In silico design and molecular docking of 1,2-benzisoxazole derivatives for their analgesic and anti-inflammatory activity using computational methods.Methods: In silico molecular properties of 1,2-benzisoxazole derivatives were predicted using various software’s such as Chemsketch, Molinspiration, PASS and Schrodinger to select compounds having optimum drug-likeness, molecular descriptors resembling those of standard drugs and not violating the ‘Lipinski rule of 5’. Molecular docking was performed on active site of nicotinic acetylcholine receptor (PDB: 2KSR) for analgesic activity and COX-2 (PDB: 6COX) for anti-inflammatory activity using Schrodinger under maestro molecular modelling environment.Results: From the results of molecular docking studies of 1,2-benzisoxazole derivatives, all the compounds showed good binding interactions with Nicotinic acetylcholine receptor and COX-2. Compounds 4a and 4c showed highest binding scores (-7.46 and-7.21 respectively) with nicotinic acetylcholine receptor and exhibited maximum analgesic activity. Compound 4a showed highest binding score (-7.8) with COX-2 and exhibited maximum anti-inflammatory activity.Conclusion: All the derivatives of 1,2-benzisoxazole showed good analgesic and anti-inflammatory activity as predicted using molecular docking on respective receptors.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7372
Author(s):  
Ahmed I. Foudah ◽  
Mohammed H. Alqarni ◽  
Aftab Alam ◽  
Mohammad Ayman Salkini ◽  
Pravej Alam ◽  
...  

The aim of this study was to explore the composition and evaluate the in silico and in vitro antioxidants and antimicrobial and anti-inflammatory effects of Apium graveolens var. dulce leaves essential oil (AGO) collected from Al-Kharj (Saudi Arabia). AGO was isolated using the hydro-distillation method, and its composition was studied using gas-chromatography-mass Spectrometry (GC–MS), antimicrobial activities using well diffusion assay, and antioxidant and anti-inflammatory activities using spectrophotometric methods. The pharmacological activities of their major compounds were predicted using PASS (prediction of activity spectra for substances) and drug-likening properties by ADME (absorption, distribution, metabolism, and excretion) through web-based online tools. Isocnidilide (40.1%) was identified as the major constituent of AGO along with β-Selinene, Senkyunolide A, Phytyl acetate, and 3-Butylphthalide. AGO exhibited a superior antibacterial activity, and the strongest activity was detected against Gram-positive bacteria and Candida albicans. Additionally, it exhibited a weaker antioxidant potential and stronger anti-inflammatory effects. PASS prediction supported the pharmacological finding, whereas ADMET revealed the safety of AGO. The molecular docking of isocnidilide was carried out for antibacterial (DNA gyrase), antioxidant (tyrosinase), and anti-inflammatory (cyclooxygenase-2) activities. The docking simulation results were involved hydrophilic interactions and demonstrated high binding affinity of isocnidilide for anti-inflammatory protein (cycloxygenase-2). The presence of isocnidilide makes AGO a potential anti-inflammatory and antimicrobial agent. AGO, and its major metabolite isocnidilide, may be a suitable candidate for the future drug development.


2021 ◽  
Vol 7 (12) ◽  
pp. 25-33
Author(s):  
A. Chiriapkin ◽  
I. Kodonidi ◽  
A. Ivchenko ◽  
L. Smirnova

The article presents a modified method for the synthesis of 2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one and the predict of their anti-inflammatory activity. The proposed method for obtaining tetrahydrothienopyrimidine derivatives is preparatively effective and simple. Their synthesis was carried out by heterocyclization of azomethine derivatives of 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide in the medium of glacial acetic acid with the catalytic addition of dimethyl sulfoxide. Preliminary prognosis of anti-inflammatory activity in silico method allowed us to identify the most promising compounds. Of these, the 4b structure containing a 2-hydroxyphenyl fragment in the second position of pyrimidine-4(3H)-one may be of the greatest interest. It seems appropriate to further study the spectrum of biological activity of the studied compounds.


Sign in / Sign up

Export Citation Format

Share Document