scholarly journals Determination of Chemical Composition, In Vitro and In Silico Evaluation of Essential Oil from Leaves of Apium graveolens Grown in Saudi Arabia

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7372
Author(s):  
Ahmed I. Foudah ◽  
Mohammed H. Alqarni ◽  
Aftab Alam ◽  
Mohammad Ayman Salkini ◽  
Pravej Alam ◽  
...  

The aim of this study was to explore the composition and evaluate the in silico and in vitro antioxidants and antimicrobial and anti-inflammatory effects of Apium graveolens var. dulce leaves essential oil (AGO) collected from Al-Kharj (Saudi Arabia). AGO was isolated using the hydro-distillation method, and its composition was studied using gas-chromatography-mass Spectrometry (GC–MS), antimicrobial activities using well diffusion assay, and antioxidant and anti-inflammatory activities using spectrophotometric methods. The pharmacological activities of their major compounds were predicted using PASS (prediction of activity spectra for substances) and drug-likening properties by ADME (absorption, distribution, metabolism, and excretion) through web-based online tools. Isocnidilide (40.1%) was identified as the major constituent of AGO along with β-Selinene, Senkyunolide A, Phytyl acetate, and 3-Butylphthalide. AGO exhibited a superior antibacterial activity, and the strongest activity was detected against Gram-positive bacteria and Candida albicans. Additionally, it exhibited a weaker antioxidant potential and stronger anti-inflammatory effects. PASS prediction supported the pharmacological finding, whereas ADMET revealed the safety of AGO. The molecular docking of isocnidilide was carried out for antibacterial (DNA gyrase), antioxidant (tyrosinase), and anti-inflammatory (cyclooxygenase-2) activities. The docking simulation results were involved hydrophilic interactions and demonstrated high binding affinity of isocnidilide for anti-inflammatory protein (cycloxygenase-2). The presence of isocnidilide makes AGO a potential anti-inflammatory and antimicrobial agent. AGO, and its major metabolite isocnidilide, may be a suitable candidate for the future drug development.

2021 ◽  
pp. 1-16
Author(s):  
Abdul Rafey ◽  
Aqsa Batool ◽  
Muhammad Kamran ◽  
Samiullah Khan ◽  
Muhammad Akram ◽  
...  

Periodontitis is an important health concern that is associated with long term complications. Development of resistance to antibiotics limits the treatment options in periodontitis. We investigated Thymus linearis essential oil for treatment of periodontitis. The essential oil was collected using hydrodistillation and characterized using GC-MS. The constituents were further analyzed for druglikeness, ADMET properties and molecular docking using transcription regulators 2UV0 and 3QP5. The GC-MS results revealed that carvacrol was a major constituent (76.26%) followed by caryophyllene oxide (6.83%) and L-borneol (6.08%). The in vitro antimicrobial studies showed significant inhibition against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa (MIC range 0.024 –0.312μg/mL). The essential oil showed a good inhibition of bacterial biofilm produced by S. aureus (72%) and S. epidermidis (70%). Finally, the antiquorum sensing property (30 mm zone of inhibition) was recorded with violacein inhibition (58%). Based on in silico and in vitro findings, it was concluded that T. linearis essential oil can be used for the treatment of periodontal infections.


2016 ◽  
Vol 11 (9) ◽  
pp. 1934578X1601100
Author(s):  
Yu-Chang Su ◽  
Kuan-Ping Hsu ◽  
Chen-Lung Ho

The chemical composition and in vitro anti-inflammatory, antioxidant and antimicrobial activities of the leaf essential oil of Machilus konishii has been investigated. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC–FID and GC–MS. Sixty-six compounds were identified, representing 100% of the oil. The main components identified were α-pinene (33.9%), β-pinene (13.9%), and thymol (12.0%). The leaf oil was able to reduce nitric oxide production by lipopolysaccharide-activated murine macrophages RAW 264.7 without reducing the cell viability. In addition, the leaf oil showed strong antioxidant and antimicrobial activities. The major ingredient of the oil that was responsible for the anti-inflammatory, antioxidant and antimicrobial activities was thymol.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sunita Singh ◽  
S. S. Das ◽  
G. Singh ◽  
Carola Schuff ◽  
Marina P. de Lampasona ◽  
...  

Gas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%),α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as11.47±0.05,10.88±0.9,9.68±0.06, and8.33±0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition againstFusarium moniliformein inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria.


2021 ◽  
Vol 25 (1) ◽  
pp. 1-14
Author(s):  
Uchechi Bliss Onyedikachi ◽  
Favour Matthew Awah ◽  
Charles Nnanna Chukwu ◽  
Emmanuel Ejiofor

Abstract The essential oils of Cymbopogon citratus (EOCC) has found use in medicine, food and chemical industry. This study attempts to provide evidence of its suitability for antioxidant and anti-inflammatory therapy. Total phenol and total flavonoid of EOCC was 49.83±0.39mg GAE/g of extract and 352.82±3.45 µg QEC/g of extract respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of its essential oil (EOCC) showed 25 peaks with myrcenyl acetate (9.703%), caryophyllene (8.997%), citronella (6.383%) been the most abundant. The in vitro anti-inflammatory assay using human red blood cell (HRBC) membrane stabilization shows that at 200µg/mL, the percentage inhibition of EOCC was significantly higher compared to diclofenac both for heat-induced and hypotonic induced haemolysis. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays showed a comparable and dose-dependent increase from 50 to 400 μg/mL in relation to vitamin C. Half maximal inhibitory concentration (IC50) of EOCC (73.16±12.89 μg/mL and 656.01±0.01 μmol Fe (II)/L) was remarkably higher compared to that of vitamin C (69.09±4.52 μg/mL and 246.79±0.01 μmol Fe (II)/L) both for DPPH and FRAP assays respectively. In conclusion, results from this study establish preliminary evidence on the therapeutic potential of EOCC in managing inflammation and oxidative stress caused by free radicals.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 104
Author(s):  
Marwa Moumni ◽  
Gianfranco Romanazzi ◽  
Basma Najar ◽  
Luisa Pistelli ◽  
Hajer Ben Amara ◽  
...  

Essential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis cucurbitacearum and Alternaria alternata at 0.6 and 0.9 mg/mL, respectively. At 1 mg/mL, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and two Origanum majorana essential oils inhibited mycelia growth of A. alternata by 54%, 71%, 68%, 36%, 90%, and 74%, respectively. S. cucurbitacearum mycelia growth was more sensitive to Lavandula essential oils, with inhibition of ~74% at 1 mg/mL. To determine the main compounds in these essential oils that might be responsible for this antifungal activity, they were analyzed by gas chromatography–mass spectrometry (GC-MS). C. citratus essential oil showed cirtal as its main constituent, while L. dentata and L. nobilis essential oils showed eucalyptol. The M. alternifolia and two O. majorana essential oils had terpinen-4-ol as the major constituent, while for L. hybrida essential oil, this was linalool. Thus, in vitro, these essential oils can inhibit the main seedborne fungi of cucurbits, with future in vivo studies now needed to confirm these activities.


Author(s):  
Faezeh KARAMI ◽  
Dara DASTAN ◽  
Mohammad FALLAH ◽  
Mohammad MATINI

Background: Trichomoniasis is one of the most common nonviral sexually transmitted infections worldwide which drug-resistant cases of the infection are rising. The aim of the study was to assessment the in vitro activity of Foeniculum vulgare and its main essential oil component on Trichomonas vaginalis. Also phytochemical investigation of F. vulgare essential oil was performed. Methods: Five T. vaginalis isolates subjected to susceptibility testing against essential oil and extracts of F. vulgare and anethole using microtiter plate method. The minimum lethal concentration (MLC) of the natural products was assessed in comparison with metronidazole. Gas chromatography-mass spectrometry and gas chromatography-flame ionization detector was applied for chemical investigation of the essential oil. Results: After 48 hours incubation, the most potent antitrichomonal agents were the methanolic and hexanic extract with MLC of 360 µg/ml and followed by the essential oil and anethole (1600 µg/ml). The isolates were sensitive to metronidazole with a mean MLC of 13.7 µg/ml. E-Anethole (88.41 %) was the major constituent of F. vulgare essential oil. Conclusion: The results suggested in vitro antiprotozoal properties of F. vulgare and anethole against T. vaginalis. Therefore further studies are needed to evaluate their in vivo effects and toxicity.


2020 ◽  
Vol 32 (1) ◽  
pp. 1
Author(s):  
Henny Zaliyana Ahmad Kamal ◽  
Tuan Nadrah Naim Tuan Ismail ◽  
Erry Mochamad Arief ◽  
Kannan Thirumulu Ponnuraj

Introduction: Cymbopogon nardus is a strong aromatic plant with relevant medicinal properties due to its essential chemical compounds and its potential therapeutic effects. This study was aimed to evaluate the antimicrobial activities of citronella essential oil against several oral pathogens and to identify the volatile compounds. Methods: The essential oil of C. nardus was purchased from Excellent Wisdom Sdn. Bhd., Malaysia. The source of raw material was collected from Malacca, the southern region of Malaysia, and the company made its taxonomic identification. An experimental in-vitro study was conducted on the essential oil processed from C. nardus genus Cymbopogon of Poaceae family. The in-vitro antimicrobial activities of C. nardus essential oil were evaluated against Streptococcus mutans (ATCC 25175), Streptococcus sobrinus (ATCC 33478), and Candida albicans (ATCC 10231) using agar well diffusion assay. The identification of the volatile compounds was performed using gas chromatography-mass spectrometry (GC-MS). Results: The C. nardus essential oil exhibited inhibitory activity against C. albicans at the concentration of 6.25%, whereby the inhibitory activity against S. mutans and S. sobrinus began at the concentration of 25%. The antimicrobial activity of C. nardus essential oil was statistically significant at the concentration of 50% in all tested pathogens. The GC-MS analysis of the C. nardus essential oil revealed the presence of few constituents, which include monoterpenes, diterpenes, sesquiterpenes and phenolic compounds. Monoterpenes were the major identified terpenoids and contributed to 54.45% of the total volatile composition. The main identified monoterpenes were citronellal (11.35%), z-Citral (11.34%), β-Myrcene (6.70%), and β-Trans-ocimene (6.03%), which was the first time β-Myrcene and β-Trans-ocimene was found in high percentage. Conclusion: C. nardus essential oil is an active antibacterial agent against several oral pathogens, and the percentages of active volatile compounds are different within different origins.


2022 ◽  
Vol 144 ◽  
pp. 464-470
Author(s):  
Sifi Ibrahim ◽  
Yousfi Mohamed ◽  
Benarous Khedidja ◽  
Dzoyem Jean Paul ◽  
Eloff Jacobus Nicolaas

2017 ◽  
Vol 22 (4) ◽  
pp. 770-776 ◽  
Author(s):  
Kamiar Zomorodian ◽  
Mahmoodreza Moein ◽  
Keyvan Pakshir ◽  
Forough Karami ◽  
Zahra Sabahi

Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography–mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases.


Sign in / Sign up

Export Citation Format

Share Document