Altered expression of the core circadian clock component PERIOD2 contributes to osteoarthritis-like changes in chondrocyte activity

2018 ◽  
Vol 36 (3) ◽  
pp. 319-331 ◽  
Author(s):  
Jing Rong ◽  
Mark Zhu ◽  
Jacob Munro ◽  
Jillian Cornish ◽  
Geraldine M McCarthy ◽  
...  
2019 ◽  
Vol 116 (43) ◽  
pp. 21893-21899 ◽  
Author(s):  
Maria A. Nohales ◽  
Steve A. Kay

Circadian clock circuitry intersects with a plethora of signaling pathways to adequately time physiological processes to occur at the most appropriate time of the day and year. However, our mechanistic understanding of how the clockwork is wired to its output is limited. Here we uncover mechanistic connections between the core clock component GIGANTEA (GI) and hormone signaling through the modulation of key components of the transduction pathways. Specifically, we show how GI modulates gibberellin (GA) signaling through the stabilization of the DELLA proteins, which act as negative components in the signaling of this hormone. GI function within the GA pathway is required to precisely time the permissive gating of GA sensitivity, thereby determining the phase of GA-regulated physiological outputs.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 853 ◽  
Author(s):  
Alireza Basti ◽  
Rita Fior ◽  
Müge Yalҫin ◽  
Vanda Póvoa ◽  
Rosario Astaburuaga ◽  
...  

Malfunctions of circadian clock trigger abnormal cellular processes and influence tumorigenesis. Using an in vitro and in vivo xenograft model, we show that circadian clock disruption via the downregulation of the core-clock genes BMAL1, PER2, and NR1D1 impacts the circadian phenotype of MYC, WEE1, and TP53, and affects proliferation, apoptosis, and cell migration. In particular, both our in vitro and in vivo results suggest an impairment of cell motility and a reduction in micrometastasis formation upon knockdown of NR1D1, accompanied by altered expression levels of SNAI1 and CD44. Interestingly we show that differential proliferation and reduced tumour growth in vivo may be due to the additional influence of the host-clock and/or to the 3D tumour architecture. Our results raise new questions concerning host–tumour interaction and show that core-clock genes are involved in key cancer properties, including the regulation of cell migration and invasion by NR1D1 in zebrafish xenografts.


Rheumatology ◽  
2021 ◽  
Author(s):  
Raewyn C Poulsen ◽  
James I Hearn ◽  
Nicola Dalbeth

Abstract The circadian clock is a specialized cell signalling pathway present in all cells. Loss of clock function leads to tissue degeneration and premature ageing in animal models demonstrating the fundamental importance of clocks for cell, tissue and organism health. There is now considerable evidence that the chondrocyte circadian clock is altered in OA. The purpose of this review is to summarize current knowledge regarding the nature of the change in the chondrocyte clock in OA and the implications of this change for disease development. Expression of the core clock component, BMAL1, has consistently been shown to be lower in OA chondrocytes. This may contribute to changes in chondrocyte differentiation and extracellular matrix turnover in disease. Circadian clocks are highly responsive to environmental factors. Mechanical loading, diet, inflammation and oxidative insult can all influence clock function. These factors may contribute to causing the change in the chondrocyte clock in OA.


2016 ◽  
Vol 113 (17) ◽  
pp. 4870-4875 ◽  
Author(s):  
Judit Soy ◽  
Pablo Leivar ◽  
Nahuel González-Schain ◽  
Guiomar Martín ◽  
Céline Diaz ◽  
...  

A mechanism for integrating light perception and the endogenous circadian clock is central to a plant’s capacity to coordinate its growth and development with the prevailing daily light/dark cycles. Under short-day (SD) photocycles, hypocotyl elongation is maximal at dawn, being promoted by the collective activity of a quartet of transcription factors, called PIF1, PIF3, PIF4, and PIF5 (phytochrome-interacting factors). PIF protein abundance in SDs oscillates as a balance between synthesis and photoactivated-phytochrome–imposed degradation, with maximum levels accumulating at the end of the long night. Previous evidence shows that elongation under diurnal conditions (as well as in shade) is also subjected to circadian gating. However, the mechanism underlying these phenomena is incompletely understood. Here we show that the PIFs and the core clock component Timing of CAB expression 1 (TOC1) display coincident cobinding to the promoters of predawn-phased, growth-related genes under SD conditions. TOC1 interacts with the PIFs and represses their transcriptional activation activity, antagonizing PIF-induced growth. Given the dynamics of TOC1 abundance (displaying high postdusk levels that progressively decline during the long night), our data suggest that TOC1 functions to provide a direct output from the core clock that transiently constrains the growth-promoting activity of the accumulating PIFs early postdusk, thereby gating growth to predawn, when conditions for cell elongation are optimal. These findings unveil a previously unrecognized mechanism whereby a core circadian clock output signal converges immediately with the phytochrome photosensory pathway to coregulate directly the activity of the PIF transcription factors positioned at the apex of a transcriptional network that regulates a diversity of downstream morphogenic responses.


Science ◽  
2021 ◽  
Vol 372 (6539) ◽  
pp. eabe9230 ◽  
Author(s):  
Elan Ness-Cohn ◽  
Ravi Allada ◽  
Rosemary Braun

Ray et al. (Reports, 14 February 2020, p. 800) report apparent transcriptional circadian rhythms in mouse tissues lacking the core clock component BMAL1. To better understand these surprising results, we reanalyzed the associated data. We were unable to reproduce the original findings, nor could we identify reliably cycling genes. We conclude that there is insufficient evidence to support circadian transcriptional rhythms in the absence of Bmal1.


2019 ◽  
Vol 116 (11) ◽  
pp. 5102-5107 ◽  
Author(s):  
Percy Griffin ◽  
Julie M. Dimitry ◽  
Patrick W. Sheehan ◽  
Brian V. Lananna ◽  
Chun Guo ◽  
...  

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα−/− mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα−/− mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα−/− microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB–related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα−/− mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα–deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα−/− mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


PLoS Biology ◽  
2014 ◽  
Vol 12 (4) ◽  
pp. e1001840 ◽  
Author(s):  
Ron C. Anafi ◽  
Yool Lee ◽  
Trey K. Sato ◽  
Anand Venkataraman ◽  
Chidambaram Ramanathan ◽  
...  

2018 ◽  
Vol 220 (3) ◽  
pp. 661-663 ◽  
Author(s):  
Fiona E. Belbin ◽  
Antony N. Dodd

2020 ◽  
Author(s):  
Wenying Yu ◽  
Mei Lin ◽  
Minghui Peng ◽  
Huijuan Yan ◽  
Jie Zhou ◽  
...  

AbstractPeroxisomes are ubiquitous organelles in eukaryotic cells that fulfill various important metabolic functions. In this study, we investigated the role of Docking/Translocation Module (DTM) peroxins, mainly FvPex8, FvPex13, FvPex14, and FvPex33, in Fusarium verticillioides virulence and fumonisin B1 (FB1) biosynthesis. Protein interaction experiments suggested that FvPex13 serves as the core subunit of F. verticillioides DTM. When we generated gene deletion mutants (ΔFvpex8, ΔFvpex13, ΔFvpex14, ΔFvpex33, ΔFvpex33/14) and examined whether the expression of other peroxin genes were affected in the DTM mutants, ΔFvpex8 strain showed most drastic changes to PEX gene expression profiles. Deletion mutants exhibited disparity in carbon source utilization and defect in cell wall integrity when stress agents were applied. Under nutrient starvation, mutants also showed higher levels of lipid droplet accumulation. Notably, ΔFvpex8 mutant showed significant FB1 reduction and altered expression of FUM1 and FUM19 genes. However, FvPex13 was primarily responsible for virulence, while ΔFvpex33/14 double mutant also showed virulence defect. In summary, our study suggests that FvPex13 is the core component of DTM, regulating peroxisome membrane biogenesis as well as PTS1- and PTS2-mediated transmembrane cargo transportation. Importantly, we predict FvPex8 as a key component in DTM that affects peroxisome function in FB1 biosynthesis in F. verticillioides.


Sign in / Sign up

Export Citation Format

Share Document