A comparison of the antifouling performance of air plasma spray (APS) ceramic and high velocity oxygen fuel (HVOF) coatings for use in marine hydraulic applications

Biofouling ◽  
2018 ◽  
Vol 34 (5) ◽  
pp. 479-491 ◽  
Author(s):  
Richard Piola ◽  
Andrew S. M. Ang ◽  
Matthew Leigh ◽  
Scott A. Wade
2010 ◽  
Vol 204 (15) ◽  
pp. 2499-2503 ◽  
Author(s):  
Martina Di Ferdinando ◽  
Alessio Fossati ◽  
Alessandro Lavacchi ◽  
Ugo Bardi ◽  
Francesca Borgioli ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 25
Author(s):  
Mirosław Szala ◽  
Mariusz Walczak ◽  
Leszek Łatka ◽  
Kamil Gancarczyk

Bulk cobalt- and nickel-based metallic materials exhibit superior resistance to cavitation erosion and sliding wear. Thus, thermally deposited High-Velocity Oxygen Fuel (HVOF) coatings seem promising for increasing the wear resistance of the bulk metal substrate. However, the effect of chemical composition on the cavitation erosion and sliding wear resistance of M(Co,Ni)CrAlY and NiCrMo coatings has not yet been exhaustively studied. In this study, High-Velocity Oxygen Fuel (HVOF) coatings such as CoNiCrAlY, NiCoCrAlY, and NiCrMoFeCo were deposited on AISI 310 (X15CrNi25-20) steel coupons. The microstructure, hardness, phase composition and surface morphology of the as-sprayed coatings were examined. Cavitation erosion tests were conducted using the vibratory method in accordance with the ASTM G32 standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction coefficients were measured. The mechanism of wear was identified with the scanning electron microscope equipped with an energy dispersive spectroscopy (SEM-EDS) method. In comparison to the NiCrMoFeCo coating, the CoNiCrAlY and NiCoCrAlY coatings have a lower sliding and cavitation wear resistance.


2013 ◽  
Vol 551 ◽  
pp. 127-132
Author(s):  
Asma Salman ◽  
Brian Gabbitas ◽  
De Liang Zhang

The study involves a special class of composites called interpenetrating phase composites (IPCs). The Ti(Al,O)/Al2O3 composite was produced using high energy mechanical milling of a mixture of TiO2 and Al followed by a high temperature self-propagating reaction. Characteristics of the feedstock powder were improved by treating it with an organic binder. The feedstock powder was thermally sprayed on to a substrate using high velocity oxygen fuel (HVOF) and air plasma spraying methods. The spraying methods resulted in coatings with significantly different microstructures. Compared with plasma sprayed coating, the coating produced by a HVOF spraying method showed a much finer and densely packed microstructure.


Alloy Digest ◽  
2008 ◽  
Vol 57 (7) ◽  

Abstract Colmonoy No. 43HV comprises a nickel-base alloy recommended for hard surfacing parts to resist wear, corrosion, heat, and galling. Deposits that have moderate hardness have increased ductility and slightly less resistance to abrasion than Colmonoy 53HV. Deposits can be finished by grinding or machined with carbide tooling. Colmonoy No. 43HV is supplied as an atomized powder specially sized for application with high-velocity oxygen fuel (HVOF) systems. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance and surface qualities as well as heat treating and surface treatment. Filing Code: Ni-664. Producer or source: Wall Colmonoy Corporation.


Sign in / Sign up

Export Citation Format

Share Document