Aquatic pathogens and biofouling: pilot study of ostreid herpesvirus 1 translocation by bivalves

Biofouling ◽  
2021 ◽  
pp. 1-15
Author(s):  
M. Fuhrmann ◽  
E. Georgiades ◽  
G. Cattell ◽  
C. Brosnahan ◽  
H. S. Lane ◽  
...  
Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 618
Author(s):  
Jacinta R Agius ◽  
Serge Corbeil ◽  
Karla J Helbig

Molluscan herpesviruses that are capable of infecting economically important species of abalone and oysters have caused significant losses in production due to the high mortality rate of infected animals. Current methods in preventing and controlling herpesviruses in the aquacultural industry are based around biosecurity measures which are impractical and do not contain the virus as farms source their water from oceans. Due to the lack of an adaptive immune system in molluscs, vaccine related therapies are not a viable option; therefore, a novel preventative strategy known as immune priming was recently explored. Immune priming has been shown to provide direct protection in oysters from Ostreid herpesvirus-1, as well as to their progeny through trans-generational immune priming. The mechanisms of these processes are not completely understood, however advancements in the characterisation of the oyster immune response has assisted in formulating potential hypotheses. Limited literature has explored the immune response of abalone infected with Haliotid herpesvirus as well as the potential for immune priming in these species, therefore, more research is required in this area to determine whether this is a practical solution for control of molluscan herpesviruses in an aquaculture setting.


Parasitology ◽  
2017 ◽  
Vol 145 (8) ◽  
pp. 1095-1104 ◽  
Author(s):  
A. J. O’ Reilly ◽  
C. Laide ◽  
A Maloy ◽  
S. Hutton ◽  
B. Bookelaar ◽  
...  

AbstractThe Pacific oyster Crassostrea gigas contributes significantly to global aquaculture; however, C. gigas culture has been affected by ostreid herpesvirus-1 (OsHV-1) and variants. The dynamics of how the virus maintains itself at culture sites is unclear and the role of carriers, reservoirs or hosts is unknown. Both wild and cultured mussels Mytilus spp. (Mytilus edulis, Mytilus galloprovincialis and hybrids) are commonly found at C. gigas culture sites. The objective of this study was to investigate if Mytilus spp. can harbour the virus and if viral transmission can occur between mussels and oysters. Mytilus spp. living at oyster trestles, 400–500 m higher up the shore from the trestles and up to 26 km at non-culture sites were screened for OsHV-1 and variants by all the World Organization for Animal Health (OIE) recommended diagnostic methods including polymerase chain reaction (PCR), quantitative PCR (qPCR), histology, in situ hybridization and confirmation using direct sequencing. The particular primers that target OsHV-1 and variants, including OsHV-1 microVar (μVar), were used in the PCR and qPCR. OsHV-1 μVar was detected in wild Mytilus spp. at C. gigas culture sites and more significantly the virus was detected in mussels at non-culture sites. Cohabitation of exposed wild mussels and naïve C. gigas resulted in viral transmission after 14 days, under an elevated temperature regime. These results indicate that mussels can harbour OsHV-1 μVar; however, the impact of OsHV-1 μVar on Mytilus spp. requires further investigation.


2019 ◽  
Vol 15 ◽  
pp. 117693431983130
Author(s):  
Umberto Rosani ◽  
Tim Young ◽  
Chang-Ming Bai ◽  
Andrea C. Alfaro ◽  
Paola Venier

Dual analyses of the interactions between Ostreid herpesvirus 1 (OsHV-1) and the bivalve Crassostrea gigas during infection can unveil events critical to the onset and progression of this viral disease and can provide novel strategies for mitigating and preventing oyster mortality. Among the currently used “omics” technologies, dual transcriptomics (dual RNA-seq) coupled with the analysis of viral DNA in the host tissues has greatly advanced the knowledge of genes and pathways mostly contributing to host defense responses, expression profiles of annotated and unknown OsHV-1 open reading frames (ORFs), and viral genome variability. In addition to dual RNA-seq, proteomics and metabolomics analyses have the potential to add complementary information, needed to understand how a malacoherpesvirus can redirect and exploit the vital processes of its host. This review explores our current knowledge of “omics” technologies in the study of host-pathogen interactions and highlights relevant applications of these fields of expertise to the complex case of C gigas infections by OsHV-1, which currently threaten the mollusk production sector worldwide.


Sign in / Sign up

Export Citation Format

Share Document