The influence of foliar and soil fertilization of humic acid on yield and quality of pepper

Author(s):  
Yasar Karakurt ◽  
Husnu Unlu ◽  
Halime Unlu ◽  
Huseyin Padem
2014 ◽  
Vol 6 (11) ◽  
Author(s):  
Yuting He ◽  
Changquan Wang ◽  
Bing Li ◽  
Wanqiu Wang ◽  
Bin Li ◽  
...  
Keyword(s):  

2018 ◽  
Vol 47 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Tuncay TURSUN ◽  
Sener AKINCI ◽  
Esin BOZKURT

Boron is an important micronutrient, required for all plant growth, and critical for high yield and quality of crops. The aim of the present research was to determine the effects of boron on pot-grown parsley (Petroselinum sativum Hoffm.). The experimental design consisted of four treatments using Hoagland-Arnon (1950) nutrient solutions with two different boron concentrations (B1 - 15 ppm and B2 - 150 ppm), each with and without 10 ml humic acid addition (HB1 and HB2), and controls with full strength Hoagland-Arnon solutions. Growth analyses of the parsley revealed that 15 ppm boron application caused an increase in root length leaf fresh and dry weight root fresh and dry weight and leaf area compared to control values. 150 ppm B (B2) concentration decreased all growth parameters compared to controls. The two humic acid treatments (HB1 and HB2) did not increase any of those growth parameters either in controls (C) or in the two boron (B1 and B2) concentrations. Analysis by (ICP-MS) revealed that B content in the leaves increased gradually in B1 and B2, as well as in both humic treatments where in HB2 it increased to 99.38% compared to B1. In the leaves, Mn, Zn and Fe contents behaved the same as B, increasing in all treatments, with the amounts in HB2 being significantly greater than in C, B1 and B2 leaves.


2021 ◽  
Vol 6 (1) ◽  
pp. 728-737
Author(s):  
Zahra Amiri Forotaghe ◽  
Mohammad Kazem Souri ◽  
Marzieh Ghanbari Jahromi ◽  
Ali Mohammadi Torkashvand

Abstract Onion is an important crop with significant roles in human diets. The growth, yield, and quality of vegetable crops, including onions, are more vulnerable to water stress than other crops. In this study, different levels of deficit irrigation (DI) as factor A (a1: 80%, a2: 70%, and a3: 60% of soil field capacity [FC]) and humic acid (HA) as factor B (b1: without and b2: with HA application) were evaluated on onion growth characteristics in a factorial design with four replications. The results showed that the interaction of DI and HA was significant on leaf protein, peroxidase (POD), superoxide dismutase (SOD), and on bulb protein and potassium (K) concentrations. The highest record of these traits was observed in a3b2 (highest DI with HA application), and their lowest was in those at first level of DI (a1). Leaf protein and, to a lesser extent, bulb protein were increased by DI and HA applications. DI at 60% but not at 70% FC significantly reduced bulb fresh weight. There was a gradual increase in leaf proline, soluble sugars, protein, catalase (CAT), POD, SOD activity, and bulb K by application of DI; however, most of bulb traits including protein, iron (Fe), zinc (Zn), and CAT and POD activity were increased only under highest DI level (a3: 60% FC). However, application of HA further increased the soluble sugars and protein concentration as well as the POD and SOD activities of leaves, and protein, Fe, K concentrations, and CAT activity of bulbs under DI. The results indicated that HA benefitted onion growth particularly under DI conditions.


2014 ◽  
Vol 21 (3) ◽  
pp. 477-485 ◽  
Author(s):  
Krzysztof Gondek ◽  
Monika Mierzwa

Abstract Organic carbon concentrations in soil, irrespective of the year of research increased significantly after application of organic materials for the soil fertilization in comparison with the soil from the NPK mineral treatment. The content of low molecular humus compounds extracted from soil using H2SO4 solution was small, regardless of the applied fertilization or year of research. However, after the third year of research a significant increase in this humus fraction content was noted in soil of all treatments where fertilization was applied. After the third year of research, carbon content in alkaline extract rose significantly in soil of all treatments where fertilization with organic materials was applied, in comparison with the soil from mineral NPK treatment. The content of humic acid carbon in soil was lower than fulvic acid carbon, which resulted in lower than one values of Cha : Cfa ratio. However, obtained results point to marked increase in both humus fractions in results of residual effect of applied fertilization. Residual effect of applied fertilization apparently increased the value of absorbance coefficient A4/6, which points to a decreased degree of condensation of humic acid molecule and greater aliphatisation.


Sign in / Sign up

Export Citation Format

Share Document