Effect of fiber treatment on the mechanical properties of date palm fiber reinforced PP/EPDM composites

2014 ◽  
Vol 24 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Reza Eslami-Farsani
2013 ◽  
Vol 467 ◽  
pp. 208-214 ◽  
Author(s):  
S. Kalyanasundaram ◽  
S. Jayabal

This paper aims at introducing and investigating the mechanical properties of new variety of natural fibers (Christmas palm fiber) used as reinforcement in polymer matrix composites. It was inferred that the poor inter laminar bonding between the Christmas palm fibers and polyester matrix restricted the mechanical properties of the composites. Hence surface modifications of Christmas palm fibers by means of alkali treatment were done in a view to enhance the bonding nature of the Christmas palm fiber with polyester matrix. The composite fabrication is carried out using compression moulding machine and the mechanical properties were tested as per ASTM standards. The effect of soaking time and solution concentration of Sodium hydroxide on the mechanical properties of Christmas palm fiber reinforced polyester composites were studied and fiber treatment conditions for better mechanical properties are identified. Scanning electron microscopy (SEM) investigations showed that surface modification improved the fiber/ matrix adhesion which in turn enhanced the mechanical properties of the Christmas palm fiber reinforced polyester composite.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


2020 ◽  
Vol 148 ◽  
pp. 316-323
Author(s):  
Fatima-Zahra Semlali Aouragh Hassani ◽  
Khadija El Bourakadi ◽  
Nawal Merghoub ◽  
Abou el kacem Qaiss ◽  
Rachid Bouhfid

2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


2014 ◽  
Vol 38 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Indrajit Saha ◽  
Sanjib Kumar Sarkar

Fiber reinforced polymer composites played a dominant role in a variety of applications for their high specific strength and modulus. The present work describes the effects of palm fiber addition on physico-mechanical properties of polyvinyl chloride (PVC) composites. The tensile strength and Young’s modulus of the fabricated products increased, while the bulk density, flexural strength and tangent modulus decreased with the increase of fiber addition. The tensile strain decreased with the increase of fiber addition up to 10% and after that it remained nearly constant, while flexural strain remained increasing. There was an initial differential thermal analysis (DTA) peak for both palm fiber and composite, whereas PVC did not have that peak due to water absorption. Thermal analysis of PVC-palm fiber composites has shown that thermal degradation of PVC started ahead of palm fiber. The thermal stability of composite was found to be the average of palm fiber and PVC foam sheet DOI: http://dx.doi.org/10.3329/jbas.v38i1.20215 Journal of Bangladesh Academy of Sciences, Vol. 38, No. 1, 83-92, 2014


2017 ◽  
Author(s):  
Muhammad Firdaus Abdul Razak ◽  
Mimi Azlina Abu Bakar ◽  
Salmiah Kasolang ◽  
Mohamad Ali Ahmad

Sign in / Sign up

Export Citation Format

Share Document