Research on the interfacial microstructure of three-layered stainless steel/Ti/low-carbon steel composite prepared by explosive welding

2020 ◽  
pp. 1-16 ◽  
Author(s):  
Ning Luo ◽  
Hanliang Liang ◽  
Xin Sun ◽  
Xueru Fan ◽  
Yanlong Chen ◽  
...  
2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1818
Author(s):  
Huirong Li ◽  
Yueying He ◽  
Haichao Zhang ◽  
Tao Ma ◽  
Yungang Li

The casting compounding process for copper-steel composite material has broad prospects of application, but due to the lack of supporting theories (especially the bonding mechanism of copper-steel at high temperatures), it is developing slowly. In this research, copper-steel composite materials for different casting temperatures have been prepared by the casting compound process. The results show that, for the casting compound process, the stable copper-steel transition layer can be formed in a short time, and the bonding of copper and low carbon steel is the result of both the diffusion of Cu in low carbon steel and the dissolution of Fe in molten copper. The diffusion coefficient of Cu in the low carbon steel is mainly concentrated in the range of 4.0 × 10−15–8.0 × 10−14 m2/s. However, for casting compound process of copper-steel, as the temperature rises the thickness of the copper-steel transition layer gradually decreases, while the Fe content in the copper layer gradually increases. At the same time, the analysis of the glow discharge results shows that, during the solid-liquid composite process of copper-steel, the element C in steel has a great influence. As the temperature rises, the segregation of C intensifies seriously; the peak of the C content moves toward the copper side and its value is gradually increases. The segregation of C would reduce the melting point of the steel and cause irregular fluctuations of the diffusion of Cu in low carbon steel. Therefore, a relatively lower molten copper temperature is more conducive to the preparation of copper-steel composite materials.


Sign in / Sign up

Export Citation Format

Share Document