Temporal evolution of the spectrum emitted by a two-level atom in the presence of a laser field

1996 ◽  
Vol 43 (4) ◽  
pp. 735-751 ◽  
Author(s):  
Emilio Fiordilino ◽  
Vincenzo Miceli
1999 ◽  
Vol 46 (5) ◽  
pp. 743-754 ◽  
Author(s):  
Pasquale Caldara ◽  
Emilio Fiordilino

2006 ◽  
Vol 20 (11n13) ◽  
pp. 1269-1279
Author(s):  
GAMAL M. ABD AL-KADER

The properties of the displaced Fock states (DFS's) superpositions are reviewed. The interaction of these states with a two-level atom in cavity with the presence of additional Kerr medium is studied. Exact general matrix elements of the time-dependent operators of a Jaynes-Cummings model (JCM), in the presence of a Kerr medium, with these states are derived. The atomic inversion and photon number distribution are discussed. The quantum entropy and the entanglement of the atom-field are investigated. The exact results are employed to perform a careful investigation of the temporal evolution of the entropy. The connection between the field entropy and the collapses and revivals of the atomic inversion has been established. The general conclusions reached are illustrated by numerical results.


2009 ◽  
Vol 23 (09) ◽  
pp. 2269-2283 ◽  
Author(s):  
A.-S. F. OBADA ◽  
A. A. EIED ◽  
G. M. ABD AL-KADER

We investigate the evolution of the atomic quantum entropy and the atom-field entanglement in a system of a Ξ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy are analyzed.


2009 ◽  
Vol 23 (25) ◽  
pp. 4993-5001
Author(s):  
A.-S. F. OBADA ◽  
H. A. HESSIAN ◽  
A.-B. A. MOHAMED

A system of a two level atom interacting with a multi-photon single mode of electromagnetic field and damped with a phase reservoir is considered. The squeezed coherent state is taken as initial field state. The exact solution of the master equation in the case of a high-Q cavity is found. The effects of phase damping on the temporal evolution of some quantitative entanglement measures between the states of the system are investigated.


2000 ◽  
Vol 14 (17n18) ◽  
pp. 631-637 ◽  
Author(s):  
S. V. LAWANDE ◽  
P. V. PANAT

An effect of phase fluctuations of a driving laser field on dissipative and dipolar forces of two-level atom is considered. The phase fluctuations are treated by a phase diffusion model where phase fluctuations follow Wiener–Levy process. An exact master equation for the relevant density operator is obtained and solved in the steady state. Optical forces are calculated. The effect of phase fluctuations on angular momentum imparted by a Laguerre–Gaussian beam and an ideal Bessel beam to the atom is investigated.


2009 ◽  
Vol 23 (15) ◽  
pp. 3241-3254 ◽  
Author(s):  
A.-S. F. OBADA ◽  
A. A. EIED ◽  
G. M. ABD AL-KADER

We investigate the evolution of the atomic quantum entropy and the atom–field entanglement in a system of a Λ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom–field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the entropy are analyzed.


2000 ◽  
Vol 47 (1) ◽  
pp. 11-24 ◽  
Author(s):  
V. O. Chaltykyan ◽  
G. G. Grigoryan ◽  
Y. T. Pashayan
Keyword(s):  

1992 ◽  
Vol 70 (6) ◽  
pp. 427-431 ◽  
Author(s):  
Constantine Mavroyannis

We have considered the induced processes that occur in a driven two-level atom, where a laser photon is absorbed and emitted by the ground and by the excited states of the atom, respectively. In the low-intensity limit of the laser field, the induced spectra arising when a laser photon is absorbed by the ground state of the atom consist of two peaks describing induced-absorption and stimulated-emission processes, respectively, where the former prevails over the latter. Asymmetry of the spectral lines occurs at off-resonance and its extent depends on the detuning of the laser field. The physical, process where a laser photon is emitted by the excited state is the reverse of that arising from the absorption of a laser photon by the ground state of the atom. The former differs from the latter in that the emission of a laser photon by the excited state occurs in the low-frequency regime and that the stimulated-emission process prevails over that of the induced absorption. In this case, amplification of ultrashort pulses is likely to occur without the need of population inversion between the optical transitions. The computed spectra are graphically presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document