Study of a hybrid joining method using TIG welding: Aluminium alloy (Report 2)

1998 ◽  
Vol 12 (1) ◽  
pp. 13-19
Author(s):  
K Yasuda ◽  
Y Ishizawa ◽  
I Kitaura
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
T. Sathish ◽  
S. Tharmalingam ◽  
V. Mohanavel ◽  
K. S. Ashraff Ali ◽  
Alagar Karthick ◽  
...  

Aluminium and its alloys play a significant role in engineering material applications due to its low weight ratio and superior corrosion resistance. The welding of aluminium alloy is challenging for the normal conventional arc welding processes. This research tries to resolve those issues by the Tungsten Inert Gas welding process. The TIG welding method is an easy, friendly process to perform welding. The widely applicable wrought aluminium AA8006 alloy, which was not considered for TIG welding in earlier studies, is considered in this investigation. For optimizing the number of experiments, the Taguchi experimental design of L9 orthogonal array type experimental design/plan was employed by considering major influencing process parameters like welding speed, base current, and peak current at three levels. The welded samples are included to investigate mechanical characterizations like surface hardness and strengths for standing tensile and impact loading. The results of the investigation on mechanical characterization of permanent joint of aluminium AA8006 alloy TIG welding were statistically analyzed and discussed. The 3D profilometric images of tensile-tested specimens were investigated, and they suggested optimized process parameters based on the result investigations.


2016 ◽  
Vol 872 ◽  
pp. 3-7
Author(s):  
Kraiwut Hoyingchareon ◽  
Prapas Muangjunburee

This work focuses on welding repair of aluminium alloy 6082 T6 by TIG welding process. Two types of filler, 4043 and 5356 were used. A comparison at I= 120A,140A, welding speed 20cm/min and gas flow rate 15 L/min was studied. Physical characteristics, macrostructure and microstructure at weld metal and Heat Affected Zone (HAZ) were investigated. Which at 140A can welding repair. The parameter 140A have complete melting and fail area at HAZ and mechanical properties more than 120A.


Author(s):  
Lydia Sobotova ◽  
Miroslav Badida ◽  
Alica Maslejova

The contribution deals with the joining of various types of materials by technology of thermal drilling. In various branches of industries, also in the automotive industry must be joining operations, service, repairing, substitution or protection workpieces, components with various types of materials. Equally, the important role as joint, is also used material, and a product preparation by assembly and disassembly operations. By utilization of new friction hybrid joining technologies we can shortage the production time, provide automation in operations, increase the quality of joints, spare of economical expenses and also we can protect the environment. In this paper authors have investigated the effect of friction drilling on the tested material, aluminium alloy AlMgSi, which was used for material testing. The created joints were evaluated visually and by microscopy methods. The errors of tested joining were documented and described, too. This contribution was made with cooperation of Technical University of Kosice and with U. S. Steel Kosice, s.r.o.


Sign in / Sign up

Export Citation Format

Share Document