scholarly journals Monitoring a municipal wastewater treatment process using a trend analysis

2017 ◽  
Vol 39 (24) ◽  
pp. 3193-3202 ◽  
Author(s):  
Jani Tomperi ◽  
Esko Juuso ◽  
Anna Kuokkanen ◽  
Kauko Leiviskä
2019 ◽  
Vol 252 ◽  
pp. 05010
Author(s):  
Paweł Król ◽  
Alberto Gallina ◽  
Michał Lubieniecki ◽  
Tadeusz Uhl ◽  
Tadeusz Żaba

Waste management is a crucial process to keep the environment in wholesome conditions. The environmental impact of solid waste and wastewater is reduced through construction of appropriate disposal installations. The objective of wastewater treatment in biological reactors is to control the process of biomaterial growth by aerating the sewage content. The process is complex, as depending on a plenty of parameters. In the last decades an effective numerical model, called the Activated Sludge Model (ASM), has been proposed for describing the biological process. The ASM is implemented in the Benchmark Simulation Model (BSM) that simulates the whole wastewater treatment process. The most important parameters in ASM are the kinetic and stoichiometric coefficients. The former describes rate-concentration dependence. The latter characterises the relationship between the components of chemical reactions taking place in the cleaning process. Above parameters are determined by on-site calibration and their importance is relevant during the development of numeric models. This paper aims to examine the influence of kinetic and stoichiometric parameters on the wastewater treatment process of a plant in Płaszów, Kraków. The analysis is carried out by a sample-based numerical procedure. It highlights the ASM parameters playing a major role in the treatment process. Results obtained from the analysis are important for future validation and optimisation processes.


2013 ◽  
Vol 48 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Kerry McPhedran ◽  
Rajesh Seth ◽  
Min Song ◽  
Shaogang Chu ◽  
Robert J. Letcher

Municipal wastewater treatment plants (MWTPs) are impacted by down-the-drain influents of anthropogenic chemicals. These chemicals are in consumer products and include the flame retardant tetrabromobisphenol A (TBBPA) and antimicrobial triclosan (TCS). Characterization of the distribution of TBBPA, TCS and the TBBPA product tribromobisphenol A (tri-BBPA) was determined at five stages along the treatment process of a typical Canadian MWTP facility. Overall, the TCS concentrations for both liquid (influents, primary effluents and final effluents (FEs)) and solid samples (primary and waste activated sludges) were similar to reported ranges in the literature. In contrast to TCS, both TBBPA and tri-BBPA concentrations were scarcely available in the literature. The TBBPA concentrations were within literature ranges for both influents and sludges, while the tri-BBPA sludge concentrations were markedly higher than a single available previous study. Mass balances for TCS, TBBPA and tri-BBPA indicated 7, 9 and 42%, respectively, of each chemical remaining in the FEs. The resultant annual mass loadings into the Detroit River were estimated to be 3.3 kg, 6.57 g, and 21.5 g for TCS, TBBPA and tri-BBPA, respectively.


1997 ◽  
Vol 35 (9) ◽  
pp. 191-198 ◽  
Author(s):  
Yu Hanqing ◽  
Joo-Hwa Tay ◽  
Francis Wilson

In this paper, a feasible municipal wastewater treatment process, using the upflow anaerobic sludge blanket (UASB) or the anaerobic baffled reactor (ABR) as an anaerobic pre-treatment system, and the reed bed or the stabilization pond with supporting media as a post-treatment system, is presented and discussed. Results obtained in pilot- and full-scale treatment plants clearly reveal that the anaerobic treatment is indeed a very attractive option for municipal wastewater pre-treatment at temperatures exceeding 20C in tropical and subtropical regions. The UASB system has been commonly employed as an anaerobic pre-treatment system. The ABR provides another potential for the anaerobic pre-treatment. The effluents from the anaerobic treatment system should be post-treated to meet discharge standards. Because of the advantages of the reed bed system when it is employed for tertiary treatment, this system could be considered as a post-treatment system. Another cost-effective system, the stabilization pond packed with attached-growth media, is also a potential post-treatment system.


2021 ◽  
Author(s):  
◽  
Brigita Daļecka

The ever-increasing concern about the widespread occurrence of pharmaceutical substances in the aquatic environment has been recognized as an emerging environmental issue, as it can cause undesirable effects on the ecosystem and human health. The current wastewater treatment methods are not designed to treat municipal wastewater from the contamination of various pharmaceutical substances. As a result, pharmaceuticals can enter the environment and pose a threat to life forms. Therefore, it is important to enhance the classical wastewater treatment process in order to meet the challenges by advancing the technologies. Currently, the biological treatment method with filamentous fungi has been considered a promising, cost-effective, and environmentally friendly method for removing pharmaceutical substances from municipal wastewater. Thesis “Wastewater Treatment from Pharmaceutical Substances with Filamentous Fungi” demonstrates the potential application of fungi in removing pharmaceutical substances and their expedience to incorporate into the classical municipal wastewater treatment process. The investigation focused on selecting suitable fungal strains that could adapt without adjusting physico-chemical parameters and compete with the microbial community in the municipal wastewater. Further, the Thesis investigated whether fungal strains could reduce nutrients and pharmaceutical substances in lab-scale and pilot-scale setup and the mechanisms of pharmaceutical substance removal. The research consists of two main stages. In the first stage, the batch-scale experiments were carried out under laboratory conditions, finding out the most suitable fungal strains for the removal of pharmaceutical substances from wastewater. The results demonstrated that fungi compete with each other, since higher removal efficiency was observed if the fungi were grown individually. Batch-scale experiments showed that Trametes versicolor (a laboratory strain) and Aspergillus luchuensis (an environmental isolate from a municipal wastewater treatment plant) can be promising strains for removing pharmaceutical substances in a non-sterile municipal wastewater treatment without the adjustment of pH level. Therefore, these strains were used for further study. In the second stage, the pilot-scale system with a fungal fluidized bed pelleted bioreactor was developed. The results demonstrated a high potential to remove phosphorus from municipal wastewater efficiently and successfully under a batch scale experiment with non-sterile municipal wastewater, while the results from the fluidized bed bioreactor did not demonstrate any significant decrease of phosphorus. Additionally, the fluidized pelleted bioreactor was optimized to perceive bioaugmentation as a strategy with the frequent addition of fungal biomass. The results from the optimization process showed that bioaugmentation is a relatively efficient approach to build on fungi in the fluidized pelleted bioreactor. Furthermore, the results from the AI-based platform with modeling study showed that optimization of bioaugmentation with fungi increases the removal efficiency of pharmaceutical substances from non-sterile municipal wastewater. The author of this study showed that both the literature review and the results from the batch and pilot-scale experiments provided new knowledge that can be used for future investigations of wastewater treatment with fungi. The Thesis will help to improve and better understand the possible application of fungi in the municipal wastewater treatment process.


2016 ◽  
Vol 74 (9) ◽  
pp. 2010-2020
Author(s):  
Liancheng Xiang ◽  
Junqi Wu ◽  
Yonghui Song ◽  
Ruixia Liu ◽  
Huibin Yu ◽  
...  

The wastewater quality of several municipal wastewater treatment plants (MWTPs) in Beijing was studied, and the water densities of different processing units were also measured during the wastewater treatment process. The results clearly showed that the water density declined from influent to effluent of the wastewater treatment process. Meanwhile, the variation in water density had good statistical correlation with the concentrations of total organic carbon, total phosphorus, suspended solids and total solids. Furthermore, the variation in water density could be used to explain the working principles of the Unifed sequencing batch reactor (SBR). Tracer tests were conducted in the Unifed SBR to investigate the hydraulic characteristics of the reactor. The experimental results showed that the variable values of water density from influent to effluent in the Fangzhuang MWTPs were greater than those caused by the temperature difference of >3 °C between the influent and the liquid in the reactor at 13 °C. Moreover, the flow regime of wastewater in the Unifed SBR was affected by the variation in water density, which may lead to stratification or a density current. Ascribed to the appearance of stratification in the Unifed SBR reactor, the water quality of the effluent could not be affected by that of the influent.


2012 ◽  
Vol 518-523 ◽  
pp. 2324-2327
Author(s):  
Jun Feng Wu ◽  
Hua Shu Ouyang ◽  
Xian Li Wang

To alleviate the water pollution, the original wastewater treatment process was transformed based on the existing structures. Anaerobic-anoxic-aerobic process (A2/O process) was used as the main process, instead of the original two-stage aeration process (AB process). Pretreatment process and advanced treatment process were strengthened. After transformation, the effluent quality could meet the first class of A standard of the "municipal wastewater treatment plant emission standards" (GB18918-2002) and all the quality indexes of the treated water met the requirements of discharge standard of sewage treatment. The original structures were fully used in this transformation, saving investment, which provided a practical reference for the transformation of the wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document