scholarly journals Octamer-binding transcription factor 4 correlates with complex karyotype, FLT3-ITD mutation and poorer risk stratification, and predicts unfavourable prognosis in patients with acute myeloid leukaemia

Hematology ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 721-728 ◽  
Author(s):  
Yongsheng Xiang ◽  
Xiaofen Zhou
2016 ◽  
Vol 175 (5) ◽  
pp. 904-916 ◽  
Author(s):  
Simone Weber ◽  
Torsten Haferlach ◽  
Tamara Alpermann ◽  
Karolína Perglerová ◽  
Susanne Schnittger ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 258
Author(s):  
Angeli Ambayya ◽  
Anthony V. Moorman ◽  
Jameela Sathar ◽  
Jeyanthy Eswaran ◽  
Sarina Sulong ◽  
...  

Hitherto, no data describing the heterogeneity of genetic profiles and risk stratifications of adult acute myeloid leukaemia (AML) in Southeast Asia are reported. This study assessed genetic profiles, Moorman’s hierarchical classification, and ELN 2017-based risk stratifications in relation to age, gender, and ethnicity in Malaysian adult AML patients. A total of 854 AML patients: male (52%), female (48%) were recruited comprising three main ethnic groups: Malays (59%), Chinese (32%) and Indians (8%). Of 307 patients with abnormal karyotypes: 36% exhibited translocations; 10% deletions and 5% trisomies. The commonest genotype was FLT3-ITD-NPM1wt (276/414; 66.7%). ELN 2017 risk stratification was performed on 494 patients, and 41% were classified as favourable, 39% as intermediate and 20% as adverse groups. More females (47%) were in the favourable risk group compared to males (37%), whereas adverse risk was higher in patients above 60 (24%) of age compared to below 60 (18%) patients. We observed heterogeneity in the distribution of genetic profiles and risk stratifications between the age groups and gender, but not among the ethnic groups. Our study elucidated the diversity of adult AML genetic profiles between Southeast Asians and other regions worldwide.


Author(s):  
C Ward ◽  
P Cauchy ◽  
DS Walton ◽  
ML Clarke ◽  
D Blakemore ◽  
...  

ABSTRACTThe transcription factor MYB plays a pivotal role in haematopoietic homeostasis and its aberrant expression is involved in the genesis and maintenance of acute myeloid leukaemia (AML). Our previous work has demonstrated that not all AML types display the same dependency on MYB expression and that MYB dependence is dictated by the nature of the driver mutation. However, whether this difference in MYB dependency is a general trend in AML still remains to be further elucidated. In this study, we investigate the importance of MYB in human leukaemia by performing siRNA-mediated knock-down in cell line models of AML with different driver lesions. We show that the characteristic reduction in proliferation and the concomitant induction of myeloid differentiation that is observed in MLL-fusion-driven leukaemia upon MYB suppression is not seen in AML cells with a complex karyotype. By performing transcriptome analysis, we demonstrate that a strong activation of MAFB expression driven by MYB ablation is restricted to MYB-dependent cells. In line with these observations, stratification of publicly available patient data reveals a reciprocal relationship between the expression of MYB and MAFB, highlighting a novel connection between those two factors in AML.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2040-2040
Author(s):  
Zheng Zhao ◽  
Sarah Daly ◽  
John Liu Yin ◽  
David Sweetser ◽  
Jacqueline Boultwood ◽  
...  

Abstract Deletions of 9q are recurring cytogenetic abnormalities in acute myeloid leukaemia (AML). In approximately one-third of cases del(9q) occurs in association with t(8;21). We have previously identified a 2.4Mb region located on 9q21.32–21.33 which is deleted in cases of del(9q) AML - the del(9q) commonly deleted region (CDR). This region encodes 11 genes which we have also previously shown not to be mutated in del(9q) AML. In order to further investigate the role of these genes in AML and in particular to elucidate the pathogenesis of del(9q) AML we have examined the expression of these genes in AML. RNA was extracted from the bone marrow or peripheral blood of patients with AML at the time of diagnosis. Patient samples from the following cytogenetic subgroups were included in this study: (1) del(9q) AML (n=8) - this includes 3 patients with associated t(8;21); (2) t(8;21) but no del(9q) (n=15); (3) Normal karyotype (n=6); (4) Complex Karyotype (n=6). Taqman assays were designed for 9 of the 11 genes located within the del(9q) CDR: FRMD3; ENSG00000148057; UBQLN1; GKAP42; Q9UF54; Q8N2B1; Q9H9A7; SLC28A3; NTRK2. For the other 2 genes within the region Taqman assays could not be performed because of uniformly low expression levels (Q8IZ41) and lack of specificity of primer-design (HNRPK). CD34-purified progenitors from normal individuals were used as controls. It was found that 6 of the 9 genes were significantly down-regulated in del(9q) AML (p<0.05): ENSG00000148057; UBQLN1; Q9UF54; Q8N2B1; Q9H9A7; NTRK2. Since del(9q) is commonly associated with t(8;21), cases of t(8;21) in which del(9q) was not present were also analysed for the expression levels of the del(9q) CDR genes. It was found that 5 of the 9 genes were significantly down regulated in t(8;21) AML (ENSG00000148057; Q9UF54; Q8N2B1; Q9H9A7; SLC28A3) (p<0.05). Only two of these genes were found to be down-regulated in AML of normal karyotype (Q9H9A7 and UBQLN1) (p<0.05) and no significant down-regulation was detected in any of these genes in AML of complex karyotype. Our findings indicate that several genes from within the del(9q) AML CDR are down-regulated in del(9q) AML. A similar pattern of down-regulation is found in cases of t(8;21) even in the absence of del(9q) AML. This suggests that down-regulation of one or more of these genes may be important in the pathogenesis of AML. It may therefore be hypothesized that this pattern of gene down-regulation provides a mechanism common to the development of AML with both del(9q) and t(8;21).


The Lancet ◽  
2020 ◽  
Vol 396 (10267) ◽  
pp. 2018
Author(s):  
Jan Philipp Bewersdorf ◽  
Alexa Siddon ◽  
Autumn DiAdamo ◽  
Amer M Zeidan

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1379-1379
Author(s):  
Lucy Chilton ◽  
Christine Harrison ◽  
Anthony V. Moorman ◽  
Iona Ashworth ◽  
Alan K. Burnett ◽  
...  

Abstract Cytogenetic analysis is a key tool in risk stratification of patients with acute myeloid leukaemia (AML). Sometimes samples are not sent or metaphase analysis fails (~10% cases). In these situations, a cytogenetic risk score cannot be assigned, preventing risk stratification. It has been suggested that in the absence of cytogenetic data, both missing and failed, patients have a poor outcome (Mederios et al (Br. J. Haematol. 2014 164(2): 245-50); Lazarevic et al (Eur. J. Haematol. 2015 94(5): 419-23)). In this study, we investigated the characteristics and prognostic significance of the provision of samples, and their successful analysis across the MRC UK series of AML trials (AML10 - AML16). Data from 14265 non-APL patients recruited to successive UK AML trials (1988 - 2012) were analysed. Patients were classified based on whether a sample was sent for cytogenetic analysis and the outcome of the analysis. Rates of successful cytogenetic analysis were higher in patients treated on intensive chemotherapy protocols (intensive: 11104/13081 (85%); non-intensive 850/1184 (72%), p<.0001). In intensively treated patients, there was a significant association between increasing age and missing or failed cytogenetic samples (p<.0001). Stratification of intensively treated patients with successful cytogenetics, according to the criteria of Grimwade et al (Blood 2010 116(3):354-65), into favourable (18%), intermediate (62%) and adverse risk (19%) were analysed for outcomes and showed 10 year survival of 66%, 30% and 12%, respectively. Survival at 10 years was 24% when no sample was sent compared to 32% when a sample failed cytogenetic analysis. Survival for patients with failed cytogenetics was not significantly different from those with intermediate risk cytogenetics in either univariate analysis (p=0.10) or after adjustment for age, performance status, white cell count and secondary disease (p=0.06). Outcomes were significantly better than those for adverse risk patients (p<.0001 for both analyses). For those with no sample, survival was significantly worse than for the intermediate risk (p<.0001 in both analyses), although the effect size was not large (HR 1.18 in adjusted analyses), yet significantly better than adverse risk patients (p<.0001, HR 0.57). While outcomes worsened with increasing age, a similar pattern was seen across all age groups (favourable/intermediate/adverse/no sample/failed: age<16 81%/57%/49%/63%/62%; age 16-59 67%/36%/13%/30%/41%; age 60+ 32%/12%/2%/8%/9%). In the most recent trial, AML17 (2009-14) of younger patients, 97% had successful cytogenetic analysis, compared to 86% in AML10-15. Here too, there was no suggestion of poor outcomes for those patients with no cytogenetic result. These results indicate that cytogenetic analysis is possible in the vast majority of younger patients, and suggest that absence of cytogenetic information is not in itself an adverse prognostic factor. This poor prognosis identified in other studies may be due to selection bias in the decision to send samples. The experience of AML17 demonstrates that, when cytogenetic analysis is required to guide treatment decisions, if results can be provided in real time, high levels of compliance can be achieved, not only in sending, but also in the quality of samples. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document