Beetroot supplemented diet exhibit anti-amnesic effect via modulation of cholinesterases, purinergic enzymes, monoamine oxidase and attenuation of redox imbalance in the brain of scopolamine treated male rats

2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tosin A. Olasehinde ◽  
Sunday I. Oyeleye ◽  
Collins U. Ibeji ◽  
Ganiyu Oboh
1970 ◽  
Vol 48 (2) ◽  
pp. 187-191
Author(s):  
E. Quevedo ◽  
A. D'Iorio

A single intraperitoneal injection of 30, 60, or 90 mg/kg of sodium pentobarbital into male rats produced an appreciable inhibition of monoamine oxidase activity of liver and heart. The brain and kidney activities were practically unaffected. Chronic administration of pentobarbital, 30 mg/kg daily for 20 days, did, however, produce an inhibition of brain monoamine oxidase (MAO) which was maximal 48 h after the last injection. In all other experiments with a single dose of barbiturate the maximal inhibition of MAO appeared 15–30 min after treatment.Sodium pentobarbital inhibited MAO activity in vitro when added to a liver mitochondrial preparation. High concentrations of barbiturate had to be used for the in vitro experiments. The Ki value for sodium pentobarbital was 1.21 × 10−3 M while the Km was 1.6 × 10−5 M. The observed inhibition was of a competitive nature. The inhibition is comparable with that observed for some flavoenzymes following addition of barbiturates.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Alessandro Virtuoso ◽  
Pernille Tveden-Nyborg ◽  
Anne Marie Voigt Schou-Pedersen ◽  
Jens Lykkesfeldt ◽  
Heidi Kaastrup Müller ◽  
...  

Findings of the effect of high-fat feeding including “Cafeteria Diets” (CAF) on brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and prefrontal cortex (PFC) in rodents are conflicting. CAF is a non-standardized, highly palatable energy-rich diet composed by everyday food items for human consumption and is known to induce metabolic syndrome and obesity in rats. However, the highly palatable nature of CAF may counteract a negative effect of chronic stress on anticipatory behavior and synaptic plasticity in the hippocampus, hence represent a confounding factor (e.g., when evaluating functional effects on the brain). This study investigated the effects of a chronic, restricted access to CAF on BDNF, monoamine neurotransmitters, and redox imbalance in HIP and PFC in male rats. Our results show that CAF induced BDNF and its receptor TrkB in PFC compared to the controls (p < 0.0005). No differences in monoamine neurotransmitters were detected in either PFC or HIP. CAF increased dehydroascorbic acid and decreased malondialdehyde in PFC (p < 0.05), suggesting an early redox imbalance insufficient to induce lipid peroxidation. This study supports that a chronic CAF on a restricted schedule increases BDNF levels in the PFC of rats, highlighting that this may be a suboptimal feeding regime when investigating the effects of diet-induced obesity in the brain and emphasizing this as a point of attention when comparing the findings.


Author(s):  
Zafer Sahin ◽  
Alpaslan Ozkurkculer ◽  
Omer Faruk Kalkan ◽  
Ahmet Ozkaya ◽  
Aynur Koc ◽  
...  

Abstract. Alterations of essential elements in the brain are associated with the pathophysiology of many neuropsychiatric disorders. It is known that chronic/overwhelming stress may cause some anxiety and/or depression. We aimed to investigate the effects of two different chronic immobilization stress protocols on anxiety-related behaviors and brain minerals. Adult male Wistar rats were divided into 3 groups as follows ( n = 10/group): control, immobilization stress-1 (45 minutes daily for 7-day) and immobilization stress-2 (45 minutes twice a day for 7-day). Stress-related behaviors were evaluated by open field test and forced swimming test. In the immobilization stress-1 and immobilization stress-2 groups, percentage of time spent in the central area (6.38 ± 0.41% and 6.28 ± 1.03% respectively, p < 0.05) and rearing frequency (2.75 ± 0.41 and 3.85 ± 0.46, p < 0.01 and p < 0.05, respectively) were lower, latency to center area (49.11 ± 5.87 s and 44.92 ± 8.04 s, p < 0.01 and p < 0.01, respectively), were higher than the control group (8.65 ± 0.49%, 5.37 ± 0.44 and 15.3 ± 3.32 s, respectively). In the immobilization stress-1 group, zinc (12.65 ± 0.1 ppm, p < 0.001), magnesium (170.4 ± 1.7 ppm, p < 0.005) and phosphate (2.76 ± 0.1 ppm, p < 0.05) levels were lower than the control group (13.87 ± 0.16 ppm, 179.31 ± 1.87 ppm and 3.11 ± 0.06 ppm, respectively). In the immobilization stress-2 group, magnesium (171.56 ± 1.87 ppm, p < 0.05), phosphate (2.44 ± 0.07 ppm, p < 0.001) levels were lower, and manganese (373.68 ± 5.76 ppb, p < 0.001) and copper (2.79 ± 0.15 ppm, p < 0.05) levels were higher than the control group (179.31 ± 1.87 ppm, 3.11 ± 0.06 ppm, 327.25 ± 8.35 ppb and 2.45 ± 0.05 ppm, respectively). Our results indicated that 7-day chronic immobilization stress increased anxiety-related behaviors in both stress groups. Zinc, magnesium, phosphate, copper and manganese levels were affected in the brain.


2021 ◽  
Vol 66 (4) ◽  
pp. 18-24
Author(s):  
I. Ushakov ◽  
Vladimir Fyodorov

Purpose: Comparative assessment of radiation-induced changes in neurons of the cerebral cortex after a single and fractionated exposure to ionizing radiation in doses of 0.1 – 1.0 Gy. Material and methods. The study was carried out in compliance with the rules of bioethics on 180 white outbred male rats at the age of 4 months. by the beginning of the experiment, exposed to a single or fractionated exposure to γ-quanta of 60Co in total doses of 0.1; 0.2; 0.5 and 1.0 Gy. Neuromorphological and histochemical methods were used to assess morphometric and tinctorial parameters of nerve cells, as well as changes in the content of protein and nucleic acids in neurons in the early and late periods of the post-radiation period. Using one-way analysis of variance, a comparative assessment of neuromorphological indicators under various modes of radiation exposure is given. Results: In the control and irradiated animals throughout their life, undulating changes in the indicators of the state of the neurons of the brain occur with a gradual decrease by the end of the experiment. Despite a number of features of the dynamics of neuromorphological parameters, these irradiation regimes do not cause functionally significant changes in the neurons of the cortex. However, in some periods of the post-radiation period, the changes under the studied irradiation regimes were multidirectional and did not always correspond to age control. Significant differences in the response of neurons to these modes of radiation exposure in the sensory and motor areas of the cerebral cortex have not been established. Conclusion: No functionally significant radiation-induced changes in neurons were found either with single or fractionated irradiation. At the same time, different modes of irradiation in general caused the same type of changes in neurons. However, in some periods of observation, changes in neuromorphological parameters under the studied irradiation regimes were not unidirectional and differed from age control, which indicates a possible risk of disturbances in the functioning of the nervous system against the background of other harmful and dangerous factors.


Author(s):  
Farouk Kamel Elbaz ◽  
Hanan F Aly ◽  
Wagdy Kb Khalil ◽  
Hoda F Booles ◽  
Gamila H Al

ABSTRACTObjective: The present study is aimed to investigate the promising action of Dunaliella salina extract as a natural protector against Alzheimer’sdisease (AD) and reported to possess a variety of activities, including antioxidant effects due to its ability to create large amount of carotenoids.Methods: D. salina is a type of halophile green microalgae was used in the present study. 50 male rats were used in this study, where aluminumchloride was orally administered to induce AD in a dose of 100 mg/kg, daily for 6 weeks. Al-intoxicated rats treated orally daily with D. salinaethanolic extract for 6 weeks in a dose of 150 mg/kg b.wt., whereas standard anti-Alzheimer drug donepezil tartrate was administered at the doseof 10 mg/kg b.wt./day for 6 consecutive weeks. The anti-Alzheimer properties of D. salina extract were achieved through measuring the calmodulin(CaM) level, paraoxonase 1 (PON1) activity, the antiapoptotic marker (Bcl2), brain-derived neurotrophic factor (BDNF), the generation of the DNAadducts (8-hydroxy-2-deoxyguanosine [8-OHdG]/2-deoxy guanosine [2-dG]), and alteration in the expression of amyloid precursor protein, β-siteAPP-cleaving enzyme 1 (BACE1), and β-site APP-cleaving enzyme 2 (BACE2) in AD rats.Results: The current results demonstrated that supplementation of AD rats with D. salina extract-enhanced CaM level, and increased PON1 activity,upregulated Bcl2 and BDNF, decreased the levels of DNA adducts (8-OHdG/2-dG), and suppressed the alterations of the expression levels of APP,BACE1, and BACE2-m RNAs as compared with those in AD rats.Conclusion: It could be concluded that the biological activity of D. salina extract might be regulated by 9-cis b-carotene protecting the brain cells fromthe oxidative stress in AD rats.Keywords: Dunaliella salina, Calmodulin, Paraoxonase 1, Bcl2, Brain-derived neurotrophic factor, Alzheimer’s disease, DNA adduct, Amyloid precursorprotein.


Sign in / Sign up

Export Citation Format

Share Document