scholarly journals A Long-Term Energy-Rich Diet Increases Prefrontal BDNF in Sprague-Dawley Rats

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Alessandro Virtuoso ◽  
Pernille Tveden-Nyborg ◽  
Anne Marie Voigt Schou-Pedersen ◽  
Jens Lykkesfeldt ◽  
Heidi Kaastrup Müller ◽  
...  

Findings of the effect of high-fat feeding including “Cafeteria Diets” (CAF) on brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and prefrontal cortex (PFC) in rodents are conflicting. CAF is a non-standardized, highly palatable energy-rich diet composed by everyday food items for human consumption and is known to induce metabolic syndrome and obesity in rats. However, the highly palatable nature of CAF may counteract a negative effect of chronic stress on anticipatory behavior and synaptic plasticity in the hippocampus, hence represent a confounding factor (e.g., when evaluating functional effects on the brain). This study investigated the effects of a chronic, restricted access to CAF on BDNF, monoamine neurotransmitters, and redox imbalance in HIP and PFC in male rats. Our results show that CAF induced BDNF and its receptor TrkB in PFC compared to the controls (p < 0.0005). No differences in monoamine neurotransmitters were detected in either PFC or HIP. CAF increased dehydroascorbic acid and decreased malondialdehyde in PFC (p < 0.05), suggesting an early redox imbalance insufficient to induce lipid peroxidation. This study supports that a chronic CAF on a restricted schedule increases BDNF levels in the PFC of rats, highlighting that this may be a suboptimal feeding regime when investigating the effects of diet-induced obesity in the brain and emphasizing this as a point of attention when comparing the findings.

2020 ◽  
Vol 318 (3) ◽  
pp. R634-R648 ◽  
Author(s):  
Zhigang Shi ◽  
Ding Zhao ◽  
Priscila A. Cassaglia ◽  
Virginia L. Brooks

In males, obesity increases sympathetic nerve activity (SNA), but the mechanisms are unclear. Here, we investigate insulin, via an action in the arcuate nucleus (ArcN), and downstream neuropathways, including melanocortin receptor 3/4 (MC3/4R) in the hypothalamic paraventricular nucleus (PVN) and dorsal medial hypothalamus (DMH). We studied conscious and α-chloralose-anesthetized Sprague-Dawley rats fed a high-fat diet, which causes obesity prone (OP) rats to accrue excess fat and obesity-resistant (OR) rats to maintain fat content, similar to rats fed a standard control (CON) diet. Nonspecific blockade of the ArcN with muscimol and specific blockade of ArcN insulin receptors (InsR) decreased lumbar SNA (LSNA), heart rate (HR), and mean arterial pressure (MAP) in OP, but not OR or CON, rats, indicating that insulin supports LSNA in obese males. In conscious rats, intracerebroventricular infusion of insulin increased MAP only in OP rats and also improved HR baroreflex function from subnormal to supranormal. The brain sensitization to insulin may elucidate how insulin can drive central SNA pathways when transport of insulin across the blood-brain barrier may be impaired. Blockade of PVN, but not DMH, MC3/4R with SHU9119 decreased LSNA, HR, and, MAP in OP, but not OR or CON, rats. Interestingly, nanoinjection of the MC3/4R agonist melanotan II (MTII) into the PVN increased LSNA only in OP rats, similar to PVN MTII-induced increases in LSNA in CON rats after blockade of sympathoinhibitory neuropeptide Y Y1 receptors. ArcN InsR expression was not increased in OP rats. Collectively, these data indicate that obesity increases SNA, in part via increased InsR signaling and downstream PVN MC3/4R.


Author(s):  
Shams M. Ghoneim ◽  
Frank M. Faraci ◽  
Gary L. Baumbach

The area postrema is a circumventricular organ in the brain stem and is one of the regions in the brain that lacks a fully functional blood-brain barrier. Recently, we found that disruption of the microcirculation during acute hypertension is greater in area postrema than in the adjacent brain stem. In contrast, hyperosmolar disruption of the microcirculation is greater in brain stem. The objective of this study was to compare ultrastructural characteristics of the microcirculation in area postrema and adjacent brain stem.We studied 5 Sprague-Dawley rats. Horseradish peroxidase was injected intravenously and allowed to circulate for 1, 5 or 15 minutes. Following perfusion of the upper body with 2.25% glutaraldehyde in 0.1 M sodium cacodylate, the brain stem was removed, embedded in agar, and chopped into 50-70 μm sections with a TC-Sorvall tissue chopper. Sections of brain stem were incubated for 1 hour in a solution of 3,3' diaminobenzidine tetrahydrochloride (0.05%) in 0.05M Tris buffer with 1% H2O2.


2021 ◽  
Vol 12 (2) ◽  
pp. 1272-1275
Author(s):  
Angu Bala Ganesh K S V ◽  
Sujeet Shekhar Sinha ◽  
Kesavi Durairaj ◽  
Abdul Sahabudeen K

Naphthalene is a bicyclic aromatic constituent commonly used in different domestic and marketable applications comprising soil fumigants, lavatory scent disks and mothballs. Accidentally, workers, children and animals are exposed to naphthalene mothballs, so there is a need to study the pathology behind this chemical toxicity. The current study was carried out to assess the ultra structural changes of basolateral amygdaloid nuclei in the Sprague Dawley rats brain in association to naphthalene toxicity. The toxicity model group was administered with naphthalene (200 and 400mg) using corn oil as a vehicle for 28 days. The post delayed toxicity of naphthalene high dose ingestion was also assessed in rats. After the experimental period, the brain tissue was processed to observe the ultra structural changes using a transmission electron microscope. The alterations in cell organelles, nuclei damage, mitochondrial swelling, chromatin condensation suggested naphthalene induced damage in the neurons of the basolateral amygdala of the brain in the toxicity model group. These experimental trials provide information about the alert of mothball usage in the home and identify risks linked with accidental exposure and misuse.


2003 ◽  
Vol 285 (2) ◽  
pp. R420-R428 ◽  
Author(s):  
Andrej A. Romanovsky ◽  
Naotoshi Sugimoto ◽  
Christopher T. Simons ◽  
William S. Hunter

The organum vasculosum laminae terminalis (OVLT) has been proposed to serve as the interface for blood-to-brain febrigenic signaling, because ablation of this structure affects the febrile response. However, lesioning the OVLT causes many “side effects” not fully accounted for in the fever literature. By placing OVLT-lesioned rats on intensive rehydration therapy, we attempted to prevent these side effects and to evaluate the febrile response in their absence. After the OVLT of Sprague-Dawley rats was lesioned electrolytically, the rats were given access to 5% sucrose for 1 wk to stimulate drinking. Sucrose consumption and body mass were monitored. The animals were examined twice a day for signs of dehydration and treated with isotonic saline (50 ml/kg sc) when indicated. This protocol eliminated mortality but not several acute and chronic side effects stemming from the lesion. The acute effects included adipsia and gross (14% of body weight) emaciation; chronic effects included hypernatremia, hyperosmolality, a suppressed drinking response to hypertonic saline, and previously unrecognized marked (by ∼2°C) and long-lasting (>3 wk) hyperthermia. Because the hyperthermia was not accompanied by tail skin vasoconstriction, it likely reflected increased thermogenesis. After the rats recovered from the acute (but not chronic) side effects, their febrile response to IL-1β (500 ng/kg iv) was tested. The sham-operated rats developed typical monophasic fevers (∼0.5°C), the lesioned rats did not. However, the absence of the febrile response in the OVLT-lesioned rats likely resulted from the untreatable side effects. For example, hyperthermia at the time of pyrogen injection was high enough (39–40°C) to solely prevent fever from developing. Hence, the changed febrile responsiveness of OVLT-lesioned animals is given an alternative interpretation, unrelated to febrigenic signaling to the brain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christian Arias-Reyes ◽  
Sofien Laouafa ◽  
Natalia Zubieta-DeUrioste ◽  
Vincent Joseph ◽  
Aida Bairam ◽  
...  

Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated “en bloc” carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO’s action.


2020 ◽  
Author(s):  
Mengping Huang ◽  
Xin Lu ◽  
Xiaofeng Wang ◽  
Jian Shu

Abstract Background Diffusion tensor imaging (DTI) is mainly used for detecting white matter fiber in the brain. From this, DTI has been applied to assess fiber in liver disorders by prior studies. But non-sufficient data has been obtained if DTI could be used for exactly staging chronic hepatitis. This study is to assess the value of DTI for staging of liver fibrosis (F), necroinflammatory activity (A), and steatosis (S) of chronic hepatitis in rats. Methods Seventy male Sprague-Dawley rats were divided into control group(n = 10) and experimental group(n = 60). The rat models of chronic hepatitis were established by abdominal subcutaneous injections of 40% CCl4. All rats underwent 3.0T MRI. ROIs were placed on DTI to estimate MR parameters (rADC value and FA value). Histopathology was the reference standard. Multiple linear regression was used to analyze the association between MR parameters and pathology. The differences in rADC value and FA value among pathological stages were evaluated by MANOVA or ANOVA. LSD was used to test the differences between each two groups. ROC analysis was performed. Results The numbers of each pathology were as follows: F0(n = 15), F1(n = 11), F2(n = 6), F3(n = 9), F4(n = 6); A0(n = 8), A1(n = 16), A2(n = 16), A3(n = 7); S0(n = 10), S1(n = 7), S2(n = 3), S3(n = 11), S4(n = 16). The rADC value had a negative correlation with liver fibrosis (r=-0.392, P = 0.008) and inflammation (r=-0.359, P = 0.015). FA value had a positive correlation with fibrosis (r = 0.409, P = 0.005). Significant differences were found in FA value between F4 and F0 ~ F3 (P = 0.03), while no significant differences among F0 ~ F3 were found (P > 0.05). AUC of FA value in differentiating F4 from F0 ~ F3 was 0.909(p < 0.001) with 83.3% Sensitivity, 85.4% specificity when the FA value was at the cut-off of 588.089(× 10− 6mm2/s). Conclusion FA value for DTI can distinguish early cirrhosis from normal, mild and moderate liver fibrosis.


2021 ◽  
Vol 24 ◽  
pp. 267-276
Author(s):  
Samantha McClenahan ◽  
Melinda Gunnell ◽  
Michael Owens

PURPOSE: α-Pyrrolidinovalerophenone (α-PVP) is a second-generation synthetic cathinone which acts as an inhibitor at the dopamine and norepinephrine transporters in the brain. These novel studies determined the pharmacokinetics (PK) of α-PVP in rats and then evaluated the effects of an α-PVP vaccine on the PK profile. METHODS: Adult male Sprague-Dawley rats were randomly divided into treatment groups (n = 24/group) in which the vaccinated rats received an initial and two booster immunizations of the α-PVP vaccine at 0, 3, and 9 wks. Control rats received saline injections. α-PVP (0.56, 1, 3 mg/kg, sc) was then administered to both groups between 11-12 weeks and serum samples were collected for determination of α-PVP serum concentrations by LC-MS/MS (n=6 rats/treatment/time). At 13 weeks, brain, heart and kidney concentrations of α-PVP were determined by LC-MS/MS after administration of 1 mg/kg α-PVP (n=4-5 rats/treatment/time). RESULTS: PK values in control rats showed dose-dependent increases in maximum serum concentrations (Cmax) and area under the curve (AUCinf) values with an elimination half-life (t1/2) of approximately 2.1 h. α-PVP exhibited linear PK profile in control rats. Vaccinated rats had significantly (p<0.05) higher serum Cmax and AUCinf values than controls, and significantly reduced total body clearance, volume of distribution and t1/2 values. Vaccinated rats had significantly lower α-PVP concentrations in the brain, heart, and kidney in comparison to control rats at early time points. CONCLUSION: Vaccination with the novel α-PVP vaccine significantly altered serum PK leading to a time-dependent reduction in brain, kidney and heart concentrations of α-PVP compared to controls.


1990 ◽  
Vol 122 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Om P. Sharma ◽  
Shafiq A. Khan ◽  
Gerhard F. Weinbauer ◽  
Mohammed Arslan ◽  
Eberhard Nieschlag

Abstract The effects of androgens on the bioactivity and molecular composition of pituitary FSH were examined in intact and GnRH antagonist-suppressed male rats. Eight groups of adult Sprague-Dawley rats were subjected to the following treatments: antagonist (75 μg/day by osmotic minipumps; sc), testosterone-filled Silastic implants (3×5 cm, sc), dihydrotestosterone-filled Silastic implants (3×5 cm, sc), E2 benzoate (15 μg/day, sc), and combined administration of antagonist with either steroid for 3 weeks. At the end of the treatment period, pituitaries were dissected out and homogenised. FSH content was determined in the pituitary extracts by an in vitro bioassay and a radioimmunoassay. Individual pituitary extracts from rats treated with vehicle, testosterone and testosterone + antagonist were subjected to isoelectric-focusing on sucrose density gradients performed in the pH range from 3.5 to 7.0. Individual isoelectric-focusing fractions (100-120) were analysed for bioactive and immunoreactive FSH. Treatment with antagonist, E2 or antagonist + E2 caused a significant decrease in pituitary FSH, whereas testosterone and dihydrotesterone alone or in combination with antagonist prevented the decrease in pituitary FSH. The effects of all treatments on both bioactive and immunoreactive FSH were similar. Testosterone treatment not only maintained FSH synthesis but also altered the molecular composition of pituitary FSH. Following treatment with testosterone there was a shift of maximal FSH bioactivity to the more acidic pH range. On the other hand, less bioactivity was recovered than corresponding immunoreactivity in the higher pH region, resulting in significantly reduced ratios of bioactivity to immunoreactivity of FSH. No significant differences were found in the isoelectric-focusing profiles or bioactivity to immunoreactivity ratios of pituitary FSH in animals treated with testosterone alone or in combination with antagonist. The results demonstrate that testosterone not only maintained the synthesis of both bioactive and immunoreactive FSH in male rats, but also influences the molecular composition of pituitary FSH. These effects of testosterone on pituitary FSH appear not to be mediated through hypothalamic GnRH.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Baojian Xue ◽  
Terry Beltz ◽  
Fang Guo ◽  
David M Pollock ◽  
Jennifer S Pollock ◽  
...  

Separation of neonatal rodent pups from their mothers has been used as a model to study the effects of early life stress (ELS) on behavioral and physiological responses in adults. Using an Induction-Delay-Expression experimental paradigm, our previous studies demonstrate that a wide range of stressors administered during an induction period produces hypertensive response sensitization (HTRS) in response to a subsequent pro-hypertensive stimulus. HTRS is accompanied by activation of the brain renin-angiotensin system (RAS) and CNS inflammation. The present study investigated whether ELS induces HTRS and changes in brain-related underlying mechanisms. Rat neonates from Sprague-Dawley breeders were subjected to ELS by separating them each morning from their mothers for 3 h on postnatal days 2 to 14. Pups from non-handled litters formed control groups. At 10 weeks of age, male rats were used to evaluate blood pressure and autonomic function using telemetric probes and pharmacological methods. In addition, in separate control and ELS groups, the lamina terminalis (LT) structures and the hypothalamic paraventricular nucleus (PVN) were analyzed for mRNA expression of RAS components and proinflammatory cytokines. Adult ELS rats as compared to non-separated controls exhibited 1) HTRS during expression testing using 2 week ANG II infusions (120 ng/kg/min s.c.; ELS animals, Δ45.5±4.5 mmHg vs. controls, Δ22.4±3.1 mmHg); 2) a greater reduction in mean arterial pressure following ganglionic blockade (hexamethonium, 30 mg/kg, ip), 3) increased sympathetic drive to the heart (atenolol, 8 mg/kg, ip), 4) decreased vagal tone (atropine, 8 mg/kg, ip), and 5) increased mRNA expression of several components of the brain RAS and proinflammatory cytokines in the LT and PVN. These results suggest that maternal ELS may predispose individuals to hypertension that is mediated by upregulation of the brain RAS and proinflammatory cytokines and increased sympathetic drive to the cardiovascular system.


2018 ◽  
Vol 30 (2) ◽  
pp. 265-273
Author(s):  
Rajiv Balyan ◽  
Ma Cai ◽  
Wenhong Zhao ◽  
Zhao Dai ◽  
Yujia Zhai ◽  
...  

Abstract BackgroundSulfotransferases (SULTs) are phase II drug-metabolizing enzymes. SULTs also regulate the biological activities of biological signaling molecules, such as various hormones, bile acids, and monoamine neurotransmitters; therefore, they play critical roles in the endocrine and nervous systems. People are subject to various kinds of physical, chemical, toxicological, physiological, and psychological stresses at one time or another. The study of the effects produced by stress may lead to finding novel remedies for many disease conditions. The effect of repeated restraint stress on rat SULT expression has not been studied. MethodsThis study involves the effect of repeated restraint stress on SULT1A1 expressions. Male Sprague-Dawley rats (n=4) were subjected to repeated restraint stress 2 h/day for 7 days. Protein and RNA expression of SULT1A1 were analyzed by western blot and quantitative real time reverse transcription polymerase chain reaction, respectively, in important tissues. ResultsWe observed that repeated restraint stress increased the expression of SULT1A1 in the liver, adrenal glands, cerebellum, hypothalamus, and cerebral cortex in male rats. Patterns of enhanced expression were observed at both mRNA and protein level, indicating that repeated restraint stress stimulates enzyme expression at the transcriptional level. ConclusionsChanges of SULT1A1 expression in important tissues caused by repeated restraint stress will have a significant effect on drug metabolism and xenobiotics detoxification. The significant changes in endocrine glands and brain sections may also cause disturbances in hormone homeostasis, therefore leading to disease conditions. This report provides clues for the understanding of the effect of stresses on health.


Sign in / Sign up

Export Citation Format

Share Document