Comparative Study of the Flow and Thermal Performance of Liquid-Cooling Parallel-Flow and Counter-Flow Double-Layer Wavy Microchannel Heat Sinks

2013 ◽  
Vol 64 (1) ◽  
pp. 30-55 ◽  
Author(s):  
Gongnan Xie ◽  
Zhiyong Chen ◽  
Bengt Sunden ◽  
Weihong Zhang
Author(s):  
Han Shen ◽  
Yingchun Zhang ◽  
Hongbin Yan ◽  
Bengt Sunden ◽  
Gongnan Xie

Previous research has proved Double-layer Microchannel Heat Sinks (MHSs) to be efficient ways to improve the cooling performance of electronic devices. However, the cooling potential of the upper working liquid cannot be fully utilized to cool down the substrate with the heated elements. In this sense, a concept of staggered double-layer MHS is proposed and designed. The parallel and counter flow directions are considered to investigate the flow arrangement effect. The Reynolds number effect, Nusselt number and pressure drop are analyzed in detail and compared with those of a parallel straight double-layer MHS. It is found that the staggered double-layer MHSs exhibit much better heat transfer enhancement and overall thermal performance compared with the parallel straight double-layer MHS. For the staggered double-layer MHSs, the counter flow case is superior to the parallel flow case. This research provides a new structure design to enhance the heat transfer in microchannel heat sinks and broad application prospects for heat sinks in the thermal management of high power density electronic devices.


Author(s):  
Gongnan Xie ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang ◽  
Jun Zhao

The problem involved in the increase of the chip output power of high-performance integrated electronic devices is the failure of reliability because of excessive thermal loads. This requires advanced cooling methods to manage the increase of the dissipated heat. The traditional air-cooling may not meet the requirements, and therefore a new generation of liquid cooling technology becomes necessary. Various microchannels are widely used to cool the electronic chips by a gas or liquid, but these microchannels are often designed to be single-layer channels. In this paper, the laminar heat transfer and pressure loss in a kind of double-layer microchannel have been investigated numerically. The layouts of parallel-flow and counter-flow for inlet/outlet flow directions are designed and then several sets of inlet flowrates are considered. The simulations show that such a double-layer microchannel can not only reduce the pressure drop effectively but also exhibits better thermal characteristics, and the parallel-flow layout is found to be better for heat dissipation when the pumping power is limited, while the counter-flow layout is better when a high pumping power is provided.


2002 ◽  
Vol 22 (14) ◽  
pp. 1569-1585 ◽  
Author(s):  
S.H. Chong ◽  
K.T. Ooi ◽  
T.N. Wong

Author(s):  
Gongnan Xie ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang

The problem involved in the increase of the chip output power of high-performance integrated electronic devices is the failure of reliability because of excessive thermal loads. This requires advanced cooling methods to be incorporated to manage the increase of the dissipated heat. The traditional air-cooling can not meet the requirements of cooling heat fluxes as high as 100 W/cm2, or even higher, and the traditional liquid cooling is not sufficient either in cooling very high heat fluxes although the pressure drop is small. Therefore, a new generation of liquid cooling technology becomes necessary. Various microchannels are widely used to cool the electronic chips by a gas or liquid removing the heat, but these microchannels are often designed to be single-layer channels with high pressure drop. In this paper, the laminar heat transfer and pressure loss of a kind of double-layer microchannel have been investigated numerically. The layouts of parallel-flow and counter-flow for inlet/outlet flow directions are designed and then several sets of inlet flow rates are considered. The simulations show that such a double-layer microchannel can not only reduce the pressure drop effectively but also exhibits better thermal characteristics. Due to the negative heat flux effect, the parallel-flow layout is found to be better for heat dissipation when the flow rate is limited to a low value while the counter-flow layout is better when a high flow rate can be provided. In addition, the thermal performance of the single-layer microchannel is between those of parallel-flow layout and counter-flow layout of the double-layer microchannel at low flow rates. At last, the optimizations of geometry parameters of double-layer microchannel are carried out through changing the height of the upper-branch and lower-branch channels to investigate the influence on the thermal performance.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Weihong Zhang ◽  
Bengt Sunden

With the increasing output power of the integrated circuit chips, the heat flux involved is being accordingly increased. In such situation, the air has almost reached its limit of cooling capacity, and thus the liquid cooling technology incorporating microchannel heat sinks is desired to cool the electronic chips in order to remove more heat loads. However, these microchannel heat sinks are often designed to be straight with rectangular cross section. In this study, on the basis of a straight microchannel having rectangular cross section, a kind of transversal wavy microchannel is designed and then the laminar flow and heat transfer are investigated numerically. It is shown that for removing the identical load, the transversal wavy microchannel has great potential to reduce pressure drop compared to the straight microchannel, especially for higher wave amplitude at the same Reynolds number, indicating the overall thermal performance of the transversal wavy microchannel is superior to the traditional straight rectangular microchannel. It is suggested such wavy microchannel can be used to cool chips effectively with much smaller pressure drop penalty.


Sign in / Sign up

Export Citation Format

Share Document