Numerical Study of Forced Convection in a Horizontal Channel with Heated Blocks Due to Oscillation of Incoming Flow

2013 ◽  
Vol 65 (6) ◽  
pp. 584-600 ◽  
Author(s):  
Abdelouahab Bouttout ◽  
Smail Benissaad ◽  
Rachid Bessaïh
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jamal Eddine Salhi ◽  
Kamal Amghar ◽  
Hicham Bouali ◽  
Najim Salhi

In the present paper, we report a numerical study of dynamic and thermal behavior of the incompressible turbulent air flow by forced convection in a two-dimensional horizontal channel. This one contains the complicated form of the deflector which has been studied by varying the inclination angle from φ = 40°, φ = 55° to φ = 65°. The baffles are mounted on lower and upper walls of the channel. The walls are maintained at a constant temperature (375 K), the inlet velocity of air is Uint = 7.8 m/s, and the Reynolds number Re = 8.73 × 104. A specifically developed numerical model was based on the finite-volume method to solve the coupled governing equations and the SIMPLE (Semi Implicit Method for Pressure Linked Equation) algorithm for the treatment of velocity-pressure coupling. For Pr = 0.71, the results obtained show that (i) the streamlines and isotherms are strongly affected by the inclinations angles at Re = 8.73 × 104, (ii) the friction coefficient near the baffles increases under the angle exchange effect, and (iii) for a constant Re, the local Nusselt number at the walls of the channel varies with increasing the inclination angle of the deflector. Furthermore, the deflectors are generally used to change the direction of the structure of flow and also to increase the turbulence levels. We can conclude that the contribution of inclined baffles improves the increase of heat and mass transfer in which the Nusselt number at a certain angle increases noticeably.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


2017 ◽  
Vol 20 (7) ◽  
pp. 607-618 ◽  
Author(s):  
Yifei Wu ◽  
Zhengping Zou ◽  
Chao Fu ◽  
Weihao Zhang

Author(s):  
Александр Анатольевич Дектерев ◽  
Артем Александрович Дектерев ◽  
Юрий Николаевич Горюнов

Исследование направлено на разработку и апробацию методики численного моделирования аэродинамических и энергетических характеристик циклоидального ротора. За основу взята конфигурация ротора IAT21 L3. Для нее с использованием CFD-пакета ANSYS Fluent построена математическая модель и выполнен расчет. Проанализировано влияние скорости набегающего потока воздуха на движущийся ротор. Математическая модель и полученные результаты исследования могут быть использованы при создании летательных аппаратов с движителями роторного типа. This article addresses the study of the aerodynamic and energy characteristics of a cycloidal rotor subject to the influence of the incoming flow. Cycloidal rotor is one of the perspective devices that provide movement of aircrafts. Despite the fact that the concept of a cycloidal rotor arose in the early twentieth century, the model of a full-scale aircraft has not been yet realized. Foreign scientists have developed models of aircraft ranging in weight from 0.06 to 100 kg. The method of numerical calculation of the cycloidal rotor from the article [1] is considered and realized in this study. The purpose of study was the development and testing of a numerical simulation method for the cycloidal rotor and study aerodynamic and energy characteristics of the rotor in the hovering mode and under the influence of the oncoming flow. The aerodynamic and energy characteristics of the cycloidal rotor, rotating at a speed of 1000 rpm with incoming flow on it with velocities of 20-80 km/h, were calculated. The calculation results showed a directly proportional increase of thrust with an increase of the incoming on the rotor flow velocity, but the power consumed by the rotor was also increased. Increase of the incoming flow velocity leads to the proportional increasing of the lift coefficient and the coefficient of drag. Up to a speed of 80 km/h, an increase in thrust and power is observed; at higher speeds, there is a predominance of nonstationary effects and difficulties in estimating the aerodynamic characteristics of the rotor. In the future, it is planned to consider the 3D formulation of the problem combined with possibility of the flow coming from other sides.


Sign in / Sign up

Export Citation Format

Share Document