FERROELECTRIC PROPERTIES OF Zr-DOPED Bi3.25La0.75Ti3O12 THIN FILM DEPOSITED BY RF MAGNETRON SPUTTERING

2007 ◽  
Vol 94 (1) ◽  
pp. 37-46 ◽  
Author(s):  
YUNYI WU ◽  
JUN YU ◽  
DUANMING ZHANG ◽  
CHAODAN ZHENG ◽  
YUNBO WANG
2006 ◽  
Vol 514-516 ◽  
pp. 1348-1352
Author(s):  
Andréi I. Mardare ◽  
Cezarina C. Mardare ◽  
Raluca Savu

The bottom electrode crystallization (BEC) method was applied to the crystallization of Pb(Zr,Ti)O3 (PZT) thin films deposited by RF magnetron sputtering on Pt/Ti/SiO2/Si substrates. Using a proportional-integral-differential controller, the current flowing in the Pt/Ti films provided accurately controlled Joule heating for the crystallization of the PZT films. The temperature uniformity of the heat treatments was investigated by measuring the ferroelectric properties of PZT. Platinum and tungsten wires were alternatively used as electrical contacts. Scanning electron microscopy (SEM) images were used to inspect the electrical contact regions between the platinum films and different contact wires. The PZT films showed higher remanent polarizations and lower leakage currents near the electrical contacts when Pt wires were used; the ferroelectric properties were more uniform on the PZT films heat-treated with W contact wires. The BEC method can successfully replace the more conventional means for thin film crystallization, having the advantage of being a very precise, low cost and low power consumption technique.


2010 ◽  
Vol 434-435 ◽  
pp. 296-299
Author(s):  
Jian Ping Yang ◽  
Xing Ao Li ◽  
An You Zuo ◽  
Zuo Bin Yuan ◽  
Zhu Lin Weng

Bi4Ti3O12 (BTO) and Bi3.25La0.75Ti3O12 (BLT) ferroelectric thin films were deposited on Pt/Si substrates by RF magnetron sputtering with Bi4Ti3O12 (BTO) and Bi3.25La0.75Ti3O12 (BLT) targets with 50-mm diameter and 5-mm thickness. The microstructure and ferroelectric properties of thin films were investigated. The grain growth behavior and ferroelectric properties such as remanent polarization were different in these two kinds of film, the effects of La doping in the BLT thin film were very obvious.


2021 ◽  
Vol 127 (7) ◽  
Author(s):  
Du-Cheng Tsai ◽  
Feng-Kuan Chen ◽  
Zue-Chin Chang ◽  
Bing-Hau Kuo ◽  
Erh-Chiang Chen ◽  
...  

2017 ◽  
Vol 86 (7) ◽  
pp. 074704 ◽  
Author(s):  
Wataru Namiki ◽  
Takashi Tsuchiya ◽  
Makoto Takayanagi ◽  
Shoto Furuichi ◽  
Makoto Minohara ◽  
...  

2011 ◽  
Vol 257 (6) ◽  
pp. 2134-2141 ◽  
Author(s):  
K. Elayaraja ◽  
M.I. Ahymah Joshy ◽  
R.V. Suganthi ◽  
S. Narayana Kalkura ◽  
M. Palanichamy ◽  
...  

2003 ◽  
Vol 82 (7) ◽  
pp. 1117-1119 ◽  
Author(s):  
P. F. Carcia ◽  
R. S. McLean ◽  
M. H. Reilly ◽  
G. Nunes

2013 ◽  
Vol 27 (22) ◽  
pp. 1350156 ◽  
Author(s):  
R. J. ZHU ◽  
Y. REN ◽  
L. Q. GENG ◽  
T. CHEN ◽  
L. X. LI ◽  
...  

Amorphous V 2 O 5, LiPON and Li 2 Mn 2 O 4 thin films were fabricated by RF magnetron sputtering methods and the morphology of thin films were characterized by scanning electron microscopy. Then with these three materials deposited as the anode, solid electrolyte, cathode, and vanadium as current collector, a rocking-chair type of all-solid-state thin-film-type Lithium-ion rechargeable battery was prepared by using the same sputtering parameters on stainless steel substrates. Electrochemical studies show that the thin film battery has a good charge–discharge characteristic in the voltage range of 0.3–3.5 V, and after 30 cycles the cell performance turned to become stabilized with the charge capacity of 9 μAh/cm2, and capacity loss of single-cycle of about 0.2%. At the same time, due to electronic conductivity of the electrolyte film, self-discharge may exist, resulting in approximately 96.6% Coulombic efficiency.


2018 ◽  
Vol 53 ◽  
pp. 01008
Author(s):  
Feihu Tan ◽  
XiaoPing Liang ◽  
Feng Wei ◽  
Jun Du

The amorphous LiPON thin film was obtained by using the crystalline Li3PO4 target and the RF magnetron sputtering method at a N2 working pressure of 1 Pa. and then the morphology and composition of LiPON thin films are analysed by SEM and EDS. SEM shows that the film was compact and smooth, while EDS shows that the content of N in LiPON thin film was about 17.47%. The electrochemical properties of Pt/LiPON/Pt were analysed by EIS, and the ionic conductivity of LiPON thin films was 3.8×10-7 S/cm. By using the hard mask in the magnetron sputtering process, the all-solid-state thin film battery with Si/Ti/Pt/LiCoO2/LiPON/Li4Ti5O12/Pt structure was prepared, and its electrical properties were studied. As for this thin film battery, the open circuit voltage was 1.9 V and the first discharge specific capacity was 34.7 μAh/cm2·μm at a current density of 5 μA/cm-2, indicating that is promising in all-solidstate thin film batteries.


Sign in / Sign up

Export Citation Format

Share Document