Growth of LiNbO3 films on single crystal sapphire substrates using pulsed laser deposition

1999 ◽  
Vol 25 (1-4) ◽  
pp. 91-102
Author(s):  
Y. Gim ◽  
K. T. Gahagan ◽  
C. Kwon ◽  
M. Hawley ◽  
V. Gopalan ◽  
...  
1994 ◽  
Vol 361 ◽  
Author(s):  
See-Hyung Lee ◽  
Tae W. Noh ◽  
Jai-Hyung Lee ◽  
Young-Gi Kim

ABSTRACTPulsed laser deposition was used to grow epitaxial LiNbO3 films on sapphire(0001) substrates with a single crystal LiNbO3 target. Using deposition temperatures below 450 °C, LiNbO3 films with correct stoichiometry could be grown without using Li-rich targets. Rutherford backscattering spectrometry measurements showed that the oxygen to niobium ratio is 3.00 ± 0.15 to 1.00. It was also found that the crystallographic orientations of the LiNbO3 films could be controlled by adjusting the oxygen pressure during deposition. An x-ray pole figure shows that epitaxial LiNbO3 films were grown on sapphire(0001), but with twin boundaries.


1998 ◽  
Vol 15 (12) ◽  
pp. 904-906 ◽  
Author(s):  
Pei-ran Zhu ◽  
S Yamamoto ◽  
A Miyashita ◽  
H Naramoto

1997 ◽  
Author(s):  
Peter A. Atanasov ◽  
Rumen I. Tomov ◽  
Zahari Y. Peshev ◽  
Anna O. Dikovska ◽  
Vassilka N. Tzaneva

Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.


2011 ◽  
Vol 326 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Se-Yun Kim ◽  
Sang-Yun Sung ◽  
Kwang-Min Jo ◽  
Joon-Hyung Lee ◽  
Jeong-Joo Kim ◽  
...  

1995 ◽  
Vol 401 ◽  
Author(s):  
Sampriti Sen ◽  
E. Ching-Prado ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
J. S. Horwitz ◽  
...  

AbstractA film of Sr0.35Ba0.65TiO3 (SBT) has been grown in situ by pulsed laser deposition on (001) LaAlO3 single crystal. From X-ray diffraction studies the sample is found to be in single phase and well oriented. Raman spectrum of the SBT film shows bands around 178, 219, 296, 513, 571 and 741 cm”. The spectrum is similar to that found in SBT ceramic material, but the frequencies of the phonons are shifted. This can be explained if the film is under stress due to the presence of defects. The bands at 296 and 741cm−1 correspond to the B1 and A1(LO) normal modes of the BaTiO3 (BT) system, and they are representative of the BT tetragonal phase, which at first glance appears to contradict earlier structural symmetry assignment for SBT(x=0.35) film at room temperature. Micro-Raman measurements from different regions of the film indicate that the SBT film is homogeneous. The bands at 296 and 741 cm−1 are broader in comparison to those in BT single crystal and SBT ceramic material. Temperature dependent halfwidths of these modes suggest strong contribution of defects. Temperature dependent results are discussed in terms of anharmonic contributions involving three and four phonon processes as well as defects. Also, the orthorhombic and rhombohedral phase transitions are discussed. Finally, SEM/EDAX and FT-IR techniques have been used for the structural characterization.


Sign in / Sign up

Export Citation Format

Share Document