The optimal wavelet threshold de-nosing method for acoustic emission signals during the medium strain rate damage process of concrete

2016 ◽  
Vol 32 (4) ◽  
pp. 400-417 ◽  
Author(s):  
Yan Wang ◽  
Shi Jie Chen ◽  
Lu Ge ◽  
Hong Xiang Hu ◽  
Yao Wang ◽  
...  
2007 ◽  
Vol 17 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Wen-jiao GAO ◽  
Ren-liang SHAN ◽  
Gong-cheng WANG ◽  
Rui-qiang CHENG

2021 ◽  
pp. 147592172110188
Author(s):  
Zonglian Wang ◽  
Keqin Ding ◽  
Huilan Ren ◽  
Jianguo Ning

To gain an insight into the evolution of micro-cracks in concrete materials, a quantitative acoustic emission investigation on the damage process of concrete prisms subjected to three-point bending loading was performed. Each of the monitored acoustic emission signals was processed by a two-level wavelet packet decomposition into four different frequency bands (AA2, DA2, AD2, and DD2), and the energy coefficients R1, R2, R3, and R4 that parameterize their characteristic frequency bands were calculated. By analyzing variations in energy coefficients of the lowest frequency band (AA2), R1, and the energy coefficients of the highest frequency band (DD2), R4, the whole damage process was divided into three stages: crack initiation, crack growth, and crack coalescence. An inverse relationship between the frequency of the acoustic emission signal emitted by the propagating crack and the crack size in concrete materials was acquired based on the damage theory of brittle materials and the strain energy release theory. The statistical analysis results of the experimental data indicated that the average of R1 increased in turn, and the average of R4 correspondingly decreased in turn from Stage 1 to Stage 3. It revealed that the frequencies of acoustic emission signals decreased gradually with the evolution of the damage of concrete prisms, which is in a good agreement with the theoretical analysis result.


2000 ◽  
Author(s):  
Emmanuel O. Ayorinde

Abstract Effects of moderate straining speed on the material and damage characteristics of beam samples of graphite/epoxy and E-glass/epoxy composites were investigated. The basic fiber architecture utilized was unidirectional, axial layup, but data was also obtained for the 45-degree orientation. Ultrasonic and acoustic emission (AE) inspections were utilized. The acoustic emission records show matrix cracking. The ultrasonic images revealed the regions of failure. The results show that in general, strain rate notably affects material and damage properties.


2021 ◽  
pp. 147592172110446
Author(s):  
Claudia Barile ◽  
Caterina Casavola ◽  
Giovanni Pappalettera ◽  
Vimalathithan Paramsamy Kannan

Signal-based acoustic emission data are analysed in this research work for identifying the damage modes in carbon fibre–reinforced plastic (CFRP) composites. The research work is divided into three parts: analysis of the shifting in the spectral density of acoustic waveforms, use of waveform entropy for selecting the best wavelet and implementation of wavelet packet transform (WPT) for identifying the damage process. The first two methodologies introduced in this research work are novel. Shifting in the spectral density is introduced in analogous to ‘flicker noise’ which is popular in the field of waveform processing. The entropy-based wavelet selection is refined by using quadratic Renyi’s entropy and comparing the spectral energy of the dominating frequency band of the acoustic waveforms. Based on the method, ‘dmey’ wavelet is selected for analysing the waveforms using WPT. The slope values of the shifting in spectral density coincide with the results obtained from WPT in characterising the damage modes. The methodologies introduced in this research work are promising. They serve the purpose of identifying the damage process effectively in the CFRP composites.


2019 ◽  
Vol 281 ◽  
pp. 04001
Author(s):  
Djillali Mezhoud ◽  
Jacqueline Saliba

Cracking in Reinforced Concrete (RC) structures may impact their durability and their structural integrity. Cracking is mainly influenced by stress distribution along the interface between steel and concrete. Thus, quantitative evaluation of steel-concrete bond, which is responsible of transferring load from steel bar to the surrounding matrix, and its effect on fracture properties is of major important. An experimental investigation on RC ties is reported in this paper. Tensile tests have been conducted on cubic specimens with different high adhesion reinforcement diameters. Those tests have been monitored continuously using the Acoustic Emission (AE) technique for a better evaluation of the damage process. The results show a good correlation between the load and the AE activity. AE signals with different characteristics have been observed during the different fracture stages. Parameters such as duration and energy increased with the loading level and can be used as indicators to detect the macrocracking of concrete. A parametric analysis is performed between average frequency and RA value. Ib-value of AE hits has been also investigated and decreases to 0.12 prior to the first macro crack.


Sign in / Sign up

Export Citation Format

Share Document