Nuclear Masses, Neutron Capture, and the r Process: A New Approach

2019 ◽  
Vol 29 (3) ◽  
pp. 18-21
Author(s):  
A. Couture ◽  
R. F. Casten ◽  
R. B. Cakirli
2018 ◽  
Vol 178 ◽  
pp. 04002 ◽  
Author(s):  
Rebecca Surman ◽  
Matthew Mumpower

Nuclear masses and lifetimes are key inputs for calculations of rapid neutron capture (r-process) nucleosynthesis. Masses and half-lives for thousands of nuclei from the valley of stability to the neutron drip line are required and only a fraction have been experimentally measured. Here we examine the promise of the Facility for Rare Isotope Beams, now under construction at Michigan State University, to dramatically reduce uncertainties in r-process abundance patterns due to uncertain masses and half-lives.


2020 ◽  
Vol 27 ◽  
pp. 175
Author(s):  
Stylianos Nikas ◽  
G. Martínez-Pinedo ◽  
M. R. Wu ◽  
A. Sieverding ◽  
M. P. Reiter

We present a study of nucleosynthesis for conditions of high Ye outflows from NeutronStar Mergers (NSMs). We investigate the effect of new beta-decay rates measurements and uncertaintiesin nuclear masses of the newly measured 84,85 Ga to the r-process nucleosynthesis calculations. The impactof these quantities to the production of the elements of the r-process abundance pattern for A < 100 isquantified and presented.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. 742-745
Author(s):  
A. Wallner ◽  
M. B. Froehlich ◽  
M. A. C. Hotchkis ◽  
N. Kinoshita ◽  
M. Paul ◽  
...  

Half of the chemical elements heavier than iron are produced by the rapid neutron capture process (r-process). The sites and yields of this process are disputed, with candidates including some types of supernovae (SNe) and mergers of neutron stars. We search for two isotopic signatures in a sample of Pacific Ocean crust—iron-60 (60Fe) (half-life, 2.6 million years), which is predominantly produced in massive stars and ejected in supernova explosions, and plutonium-244 (244Pu) (half-life, 80.6 million years), which is produced solely in r-process events. We detect two distinct influxes of 60Fe to Earth in the last 10 million years and accompanying lower quantities of 244Pu. The 244Pu/60Fe influx ratios are similar for both events. The 244Pu influx is lower than expected if SNe dominate r-process nucleosynthesis, which implies some contribution from other sources.


2020 ◽  
Vol 498 (3) ◽  
pp. 3549-3559
Author(s):  
Aldo Mura-Guzmán ◽  
D Yong ◽  
C Abate ◽  
A Karakas ◽  
C Kobayashi ◽  
...  

ABSTRACT We present new fluorine abundance estimations in two carbon enhanced metal-poor (CEMP) stars, HE 1429−0551 and HE 1305+0007. HE 1429−0551 is also enriched in slow neutron-capture process (s-process) elements, a CEMP-s, and HE 1305+0007 is enhanced in both, slow and rapid neutron-capture process elements, a CEMP-s/r. The F abundances estimates are derived from the vibration–rotation transition of the HF molecule at 23358.6 Å  using high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) at the 4-m class Lowell Discovery Telescope. Our results include an F abundance measurement in HE 1429−0551 of A(F) = +3.93 ([F/Fe] = +1.90) at [Fe/H] = −2.53, and an F upper limit in HE 1305+0007 of A(F) &lt; +3.28 ([F/Fe] &lt; +1.00) at [Fe/H] = −2.28. Our new derived F abundance in HE 1429−0551 makes this object the most metal-poor star where F has been detected. We carefully compare these results with literature values and state-of-the-art CEMP-s model predictions including detailed asymptotic giant branch (AGB) nucleosynthesis and binary evolution. The modelled fluorine abundance for HE 1429−0551 is within reasonable agreement with our observed abundance, although is slightly higher than our observed value. For HE 1429−0551, our findings support the scenario via mass transfer by a primary companion during its thermally pulsing phase. Our estimated upper limit in HE 1305+0007, along with data from the literature, shows large discrepancies compared with AGB models. The discrepancy is principally due to the simultaneous s- and r-process element enhancements which the model struggles to reproduce.


Author(s):  
F Rizzuti ◽  
G Cescutti ◽  
F Matteucci ◽  
A Chieffi ◽  
R Hirschi ◽  
...  

Abstract Most neutron capture elements have a double production by r- and s-processes, but the question of production sites is complex and still open. Recent studies show that including stellar rotation can have a deep impact on nucleosynthesis. We studied the evolution of Sr and Ba in the Milky Way. A chemical evolution model was employed to reproduce the Galactic enrichment. We tested two different nucleosynthesis prescriptions for s-process in massive stars, adopted from the Geneva group and the Rome group. Rotation was taken into account, studying the effects of stars without rotation or rotating with different velocities. We also tested different production sites for the r-process: magneto rotational driven supernovae and neutron star mergers. The evolution of the abundances of Sr and Ba is well reproduced. The comparison with the the most recent observations shows that stellar rotation is a good assumption, but excessive velocities result in overproduction of these elements. In particular, the predicted evolution of the [Sr/Ba] ratio at low metallicity does not explain the data at best if rotation is not included. Adopting different rotational velocities for different stellar mass and metallicity better explains the observed trends. Despite the differences between the two sets of adopted stellar models, both show a better agreement with the data assuming an increase of rotational velocity toward low metallicity. Assuming different r-process sources does not alter this conclusion.


AIP Advances ◽  
2014 ◽  
Vol 4 (4) ◽  
pp. 041008 ◽  
Author(s):  
R. Surman ◽  
M. Mumpower ◽  
R. Sinclair ◽  
K. L. Jones ◽  
W. R. Hix ◽  
...  

2009 ◽  
Vol 5 (S265) ◽  
pp. 54-56
Author(s):  
D. Yong ◽  
A. I. Karakas ◽  
D. L. Lambert ◽  
A. Chieffi ◽  
M. Limongi

AbstractWe present abundance measurements for a large number of neutron-capture elements in giant stars of the globular clusters M4, M5, and M13. The relative abundance ratios differ between all three clusters. For all clusters, we find that the mean abundances for the elements from Ba to Hf can be well explained by scaled versions of the solar s- and r-process abundances, albeit with different mixtures of s- and r-process material for each clusters.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
A. Bhattacharyya ◽  
Ushasi Datta ◽  
A. Rahaman ◽  
S. Chakraborty ◽  
T. Aumann ◽  
...  

2007 ◽  
Vol 24 (5) ◽  
pp. 1417-1420 ◽  
Author(s):  
Cui Wen-Yuan ◽  
Cui Dong-Nuan ◽  
Du Yun-Shuang ◽  
Zhang Bo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document