60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae

Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. 742-745
Author(s):  
A. Wallner ◽  
M. B. Froehlich ◽  
M. A. C. Hotchkis ◽  
N. Kinoshita ◽  
M. Paul ◽  
...  

Half of the chemical elements heavier than iron are produced by the rapid neutron capture process (r-process). The sites and yields of this process are disputed, with candidates including some types of supernovae (SNe) and mergers of neutron stars. We search for two isotopic signatures in a sample of Pacific Ocean crust—iron-60 (60Fe) (half-life, 2.6 million years), which is predominantly produced in massive stars and ejected in supernova explosions, and plutonium-244 (244Pu) (half-life, 80.6 million years), which is produced solely in r-process events. We detect two distinct influxes of 60Fe to Earth in the last 10 million years and accompanying lower quantities of 244Pu. The 244Pu/60Fe influx ratios are similar for both events. The 244Pu influx is lower than expected if SNe dominate r-process nucleosynthesis, which implies some contribution from other sources.

2019 ◽  
Vol 23 ◽  
pp. 1
Author(s):  
F. Käppeler

The abundances of the chemical elements heavier than iron can be attributed in about equal parts to the r and s processes, which are taking place in supernova explosions and during the He and C burning phases of stellar evolution, respectively. So far, quantitative studies of the r-process are out of reach, because it involves reactions on extremely short-lived neutron-rich nuclei. On the contrary, the situation for the s-process is far advanced, thanks to a comprehensive database of experimental (n,γ) cross sections for most isotopes along the reaction path from 12C to the Pb/Bi region. For the stable isotopes last gaps in the data are presently closed, but further studies are clearly needed to reach the required accuracy and to resolve remaining discrepancies. The quest for cross sections of unstable isotopes remains a persisting challenge though. In particular, nuclei which act as branching points are of prime interest, because they provide key information on the deep stellar interior. While the activation method is limited to a few exceptional branch-point nuclei, successful measurements via the time-of- flight technique are depending on intense pulsed neutron sources and elaborate methods for sample production. Current developments in Europe are providing promising perspectives in both areas.


2020 ◽  
Vol 498 (3) ◽  
pp. 3549-3559
Author(s):  
Aldo Mura-Guzmán ◽  
D Yong ◽  
C Abate ◽  
A Karakas ◽  
C Kobayashi ◽  
...  

ABSTRACT We present new fluorine abundance estimations in two carbon enhanced metal-poor (CEMP) stars, HE 1429−0551 and HE 1305+0007. HE 1429−0551 is also enriched in slow neutron-capture process (s-process) elements, a CEMP-s, and HE 1305+0007 is enhanced in both, slow and rapid neutron-capture process elements, a CEMP-s/r. The F abundances estimates are derived from the vibration–rotation transition of the HF molecule at 23358.6 Å  using high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) at the 4-m class Lowell Discovery Telescope. Our results include an F abundance measurement in HE 1429−0551 of A(F) = +3.93 ([F/Fe] = +1.90) at [Fe/H] = −2.53, and an F upper limit in HE 1305+0007 of A(F) < +3.28 ([F/Fe] < +1.00) at [Fe/H] = −2.28. Our new derived F abundance in HE 1429−0551 makes this object the most metal-poor star where F has been detected. We carefully compare these results with literature values and state-of-the-art CEMP-s model predictions including detailed asymptotic giant branch (AGB) nucleosynthesis and binary evolution. The modelled fluorine abundance for HE 1429−0551 is within reasonable agreement with our observed abundance, although is slightly higher than our observed value. For HE 1429−0551, our findings support the scenario via mass transfer by a primary companion during its thermally pulsing phase. Our estimated upper limit in HE 1305+0007, along with data from the literature, shows large discrepancies compared with AGB models. The discrepancy is principally due to the simultaneous s- and r-process element enhancements which the model struggles to reproduce.


Author(s):  
F Rizzuti ◽  
G Cescutti ◽  
F Matteucci ◽  
A Chieffi ◽  
R Hirschi ◽  
...  

Abstract Most neutron capture elements have a double production by r- and s-processes, but the question of production sites is complex and still open. Recent studies show that including stellar rotation can have a deep impact on nucleosynthesis. We studied the evolution of Sr and Ba in the Milky Way. A chemical evolution model was employed to reproduce the Galactic enrichment. We tested two different nucleosynthesis prescriptions for s-process in massive stars, adopted from the Geneva group and the Rome group. Rotation was taken into account, studying the effects of stars without rotation or rotating with different velocities. We also tested different production sites for the r-process: magneto rotational driven supernovae and neutron star mergers. The evolution of the abundances of Sr and Ba is well reproduced. The comparison with the the most recent observations shows that stellar rotation is a good assumption, but excessive velocities result in overproduction of these elements. In particular, the predicted evolution of the [Sr/Ba] ratio at low metallicity does not explain the data at best if rotation is not included. Adopting different rotational velocities for different stellar mass and metallicity better explains the observed trends. Despite the differences between the two sets of adopted stellar models, both show a better agreement with the data assuming an increase of rotational velocity toward low metallicity. Assuming different r-process sources does not alter this conclusion.


1967 ◽  
Vol 45 (7) ◽  
pp. 2315-2332 ◽  
Author(s):  
J. W. Truran ◽  
W. D. Arnett ◽  
A. G. W. Cameron

It is generally assumed that element synthesis will take place readily under the extreme conditions believed to exist in supernova explosions. We have examined the types of thermonuclear reactions that can occur in a supernova shock wave which propagates through the stellar envelope, in which a temperature ~5 × 109 °K may occur for ~10−2 seconds. The calculations are performed using a network of nuclei connected to their neighbors by absorption or emission of neutrons, protons, alpha particles and photons (Truran et al. 1966). The results show that iron-peak elements can be produced by a supernova shock wave, but the iron-peak composition observed in nature is not produced unless some transformation of protons to neutrons has taken place in the material before the passage of the shock wave. Furthermore, a neutron flux sufficient to drive the rapid neutron-capture process is not attained under these conditions in the stellar envelope.


Science ◽  
2014 ◽  
Vol 345 (6197) ◽  
pp. 650-653 ◽  
Author(s):  
Maria Lugaro ◽  
Alexander Heger ◽  
Dean Osrin ◽  
Stephane Goriely ◽  
Kai Zuber ◽  
...  

Among the short-lived radioactive nuclei inferred to be present in the early solar system via meteoritic analyses, there are several heavier than iron whose stellar origin has been poorly understood. In particular, the abundances inferred for 182Hf (half-life = 8.9 million years) and 129I (half-life = 15.7 million years) are in disagreement with each other if both nuclei are produced by the rapid neutron-capture process. Here, we demonstrate that contrary to previous assumption, the slow neutron-capture process in asymptotic giant branch stars produces 182Hf. This has allowed us to date the last rapid and slow neutron-capture events that contaminated the solar system material at ∼100 million years and ∼30 million years, respectively, before the formation of the Sun.


1998 ◽  
Vol 11 (1) ◽  
pp. 49-52
Author(s):  
Andrew McWilliam

Early abundance studies (e.g. Pagel 1968) showed that neutron-capture heavy elements (Z > 30) are present in halo stars, but deficient relative iron. Truran (1981) argued that at low [Fe/H] the chemical enrichment time scale was shorter than the lifetime of low-mass AGB progenitors, which are the main source of solar system heavy elements. He proposed that in the halo the heavy elements were produced by high mass stars, in type II supernova events (SNII), by rapid neutron capture nucleosynthesis (the r-process). Spite & Spite (1978) investigated the trend of heavy element abundances with metallicity, from a small sample of halo stars. They found that at [Fe/H]~ -1.5 the halo [heavy element/Fe] ratio is approximately solar; but at lower [Fe/H] there is a roughly linear decrease of [heavy element/Fe] with declining [Fe/H]. Subsequent observations confirmed the general trend of heavy elements in the halo: [M/Fe]~0 down to [Fe/H]~ -2, followed by a linear decline in [M/Fe] to lower [Fe/H] (e.g. Gilroy et al 1988, Lambert 1987). Additional evidence for the role of SNII in halo heavy element synthesis comes from the trend of [Eu/Fe] with [Fe/H]. Europium is an almost pure r-process element (Käppeler et al. 1989) and its abundance trend with metallicity is similar to the α element trend (e.g. O and Mg made in massive stars). The element ratios show an increase in [M/Fe] as [Fe/H] decreases from 0 to —1; below this point [Eu/Fe] and [α/Fe] remain constant at ~+0.3 dex. For α elements this behavior is thought to be due to the change in the relative contributions from type II SN and type la SN in the disk and halo (Tinsley 1979). The trend for Eu also indicates production by massive stars (e.g. SNII). Near [Fe/H]~ -2.5 Eu appears to decline relative to [Fe/H] (like other heavy elements, but unlike the α elements). This abundance trend has been used to constrain the numerous proposed astrophysical sites of the r-process (e.g. Mathews & Cowan 1990).


2009 ◽  
Vol 5 (S262) ◽  
pp. 412-413
Author(s):  
Vinicius M. Placco ◽  
Silvia Rossi ◽  
Timothy C. Beers ◽  
Sara Lucatello

AbstractThe main goal of this work is to explore the abundance patterns of the very metal-poor stars ([Fe/H]<−2.0) observed by the HERES (Hamburg ESO R-process Enhanced Star - Christlieb et al. 2004) survey. This type of study allows the analysis of the correlations among chemical elements, and place some constraints on the operation of the neutron-capture (r and s) processes in the early Galaxy. This approach makes use of statistical tools, such as agglomerative nesting, which can identify the formation of natural groups based on relations among elemental abundances (e.g. [C/Fe], [Sr/Fe], [Ba/Fe], and [Eu/Fe]), and can also be used in a series of “large-sample like” studies.This study provides a comprehensive analysis of a sample of 326 metal-poor stars, and introduces two new subclasses (r-0 and s-I) for metal-poor stars with determined abundances of neutron-capture elements, aiming to standardize the nomenclature for those objects and, by reproducing previous results, confirms the validity of the statistical method used.


2004 ◽  
Vol 194 ◽  
pp. 14-17 ◽  
Author(s):  
I. F. Mirabell

AbstractGamma-ray bursts (GRBs) of long duration probably result from the core-collapse of massive stars in binary systems. After the collapse of the primary star the binary system may remain bound leaving a microquasar or ULX source as remnant. In this context, microquasars and ULXs are fossils of GRB sources and should contain physical and astrophysical clues on their GRB-source progenitors. Here I show that the identification of the birth place of microquasars can provide constrains on the progenitor stars of compact objects, and that the runaway velocity can be used to constrain the energy in the explosion of massive stars that leave neutron stars and black holes. The observations show that the neutron star binaries LS 5039, LSI +61°303 and the low-mass black hole GRO J1655-40 formed in energetic supernova explosions, whereas the black holes of larger masses (M ≥ 10 M⊙) in Cygnus X-l and GRS 1915+105 formed promptly, in the dark or in underluminous supornovao. The association with clusters of massive stars of the microquasar LSI +61°303 and the magnetars SGR 1806-20 and SGR 1900+14, suggest that very massive stars (M ≥ 50 M⊙) may -in some cases- leave neutron stars rather than black holes. The models of GRB sources of long duration have the same basic ingredients as microquasars and ULXs: compact objects with accretion disks and relativistic jets in binary systems. Therefore, the analogies between microquasars and AGN may be extended to the sources of GRBs.


Science ◽  
2021 ◽  
Vol 371 (6532) ◽  
pp. 945-948 ◽  
Author(s):  
Benoit Côté ◽  
Marius Eichler ◽  
Andrés Yagüe López ◽  
Nicole Vassh ◽  
Matthew R. Mumpower ◽  
...  

The composition of the early Solar System can be inferred from meteorites. Many elements heavier than iron were formed by the rapid neutron capture process (r-process), but the astrophysical sources where this occurred remain poorly understood. We demonstrate that the near-identical half-lives (≃15.6 million years) of the radioactive r-process nuclei iodine-129 and curium-247 preserve their ratio, irrespective of the time between production and incorporation into the Solar System. We constrain the last r-process source by comparing the measured meteoritic ratio 129I/247Cm = 438 ± 184 with nucleosynthesis calculations based on neutron star merger and magneto-rotational supernova simulations. Moderately neutron-rich conditions, often found in merger disk ejecta simulations, are most consistent with the meteoritic value. Uncertain nuclear physics data limit our confidence in this conclusion.


Vestnik RFFI ◽  
2019 ◽  
pp. 70-86
Author(s):  
Alexander A. Lutovinov

The first elements of the Periodic Table – hydrogen, helium and partly lithium - appeared in the first seconds after the birth of the Universe. The first stars “gathered” from these materials are the natural factories of the synthesis of heavier elements, not only throughout their lives, but even during their death process, during Supernova explosions. Supernova explosions, in their turn, are powerful factories for the production of heavy elements. Modern instruments allow scientists not only to register such events, but also to determine how many different chemical elements were formed during such events. The recent discovery of the merging neutron stars and subsequent studies of their afterglow allowed us to clarify the process of formation of superheavy elements in the Universe up to the gold and uranium. Thus, astrophysical observations give scientists the most important information about the “production rates” of elements in the nature, and their abundance in the Universe.


Sign in / Sign up

Export Citation Format

Share Document