Velocity-based Formation Damage Characterization Method for Produced Water Re-injection: Application on Masila Block Core Flood Tests

2008 ◽  
Vol 26 (7-8) ◽  
pp. 937-954 ◽  
Author(s):  
R. Salehi Mojarad ◽  
A. Settari
2021 ◽  
Author(s):  
Rezki Oughanem ◽  
Thomas Gumpenberger ◽  
Jean Grégoire Boero-Rollo ◽  
Scherwan Suleiman ◽  
Jalel Ochi ◽  
...  

Abstract A water treatment pilot skid called WaOω has been developed by TotalEnergies to test the efficiency of the centrifugation technology in treating the produced water containing back produced polymer. In case of success, this technology would be implemented on field and the water quality targeted by the technology must allow re-injecting the treated produced water in matrix flow regime for pressure maintain and sweep efficiency. The same interest was expressed by OMV and a partnership project has been built. It was also agreed that OMV builds a second pilot skid called PRT that allows carrying out core flood tests onsite to assess the formation damage and related permeability decline that could be induced by the treated produced water. Both pilot skids have been implemented, connected to each other, and tested during more than one year on the OMV's Matzen oil field nearby Vienna where degraded polymer is already back produced by wells and present in the produced water. More than seventy core flooding tests have been performed in different centrifugation conditions in terms of speed and water qualities, some of them on high permeable sand packs representing the field targeted by TotalEnergies and some others on consolidated sandstone samples of lower permeability representing OMV reservoirs. The effect of adding fresh polymer to the treated produced water for EOR purposes has also been investigated. Some complementary core flood tests have also been performed in TotalEnergies labs using reconstituted sand packs and produced waters with and without polymer to understand the contribution of the degraded polymer alone, the produced water quality alone and both to understand the formation damage and some uncommon results observed with the PRT pilot skid. Core flood tests data often obtained on long injection periods revealed of a high quality, reliable and reproducible. They also showed that even if centrifugation seems to be a good technology, the very clean and transparent water that it delivered induced surprisingly some core permeability declines the origin of which would be discussed in this paper. However, it was clearly established that the presence of degraded polymer has a cleaning effect and limits the formation damage induced by the produced water injected on cores if the Total Suspended Solids in the treated water remains at an acceptable level. Adding fresh polymers limited even more the formation damage because their cleaning effect is more pronounced than with degraded polymer.


2017 ◽  
Author(s):  
K. Fischer ◽  
F. C. Ferreira ◽  
B. B. Holzberg ◽  
J. S. Pastor ◽  
L. Reinli ◽  
...  

2015 ◽  
Vol 55 (2) ◽  
pp. 485
Author(s):  
Abbas Zeinijahromi ◽  
Pavel Bedrikovetski

Excessive water production is a major factor in reduced well productivity. This can result from water channelling from the water table to the well through natural fractures or faults, water breakthrough in high permeability zones, or water coning. The use of foams or gels for controlling water production through high-permeable layers has been tested successfully in several field cases. A large treatment volume, however, is required to block the water influx that generally involves high operational and material costs. This extended abstract proposes a new cost-effective method of creating a low-permeable barrier against the produced water with induced formation damage. The method includes applying induced formation damage to block the water influx without hindering the oil production. This can be achieved by injection of a small slug of fresh water into the water-producing layer. This results in release of in situ fines from the matrix, which can decrease permeability and create a local low-permeable barrier to the producing water. In large-scale approximation, water injection with induced fines migration is analogous to polymer flooding. This analogy is used to model the fresh water with induced formation damage. Sensitivity studies showed that the injection of 0.01 PVI of fresh water resulted in the blockage of the water-producing layer and an incremental recovery by 8% in field case A, with respect to the standard production scenario. The authors found that the incremental gas recovery with induced formation damage was sensitive to reservoir heterogeneity, permeability reduction and slug volume.


2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Aurélie Mouret ◽  
Isabelle Hénaut ◽  
Vincent Mirallès ◽  
Abdulkareem AlSofi

Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and other chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. In addition, we studied the impact of enhanced oil recovery (EOR) chemicals on the different separation techniques in terms of efficiency and water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water: oil ratio using dead crude oil and synthetic representative brines with or without the EOR chemicals. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used Jar Tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation even in the presence of EOR chemicals. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. In the presence of EOR chemicals, filtration lost its effectiveness due to the low interfacial tension with surfactants and water quality became poor. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. However, the benefits from media filtration were annihilated by the presence of EOR chemicals. Based on these results and at least for our case study, we conclude that centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. In terms of the effects of EOR chemicals, the performance of centrifugation is reduced while filtrations are largely impaired by the presence of EOR chemicals. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.


2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Aurélie Mouret ◽  
Isabelle Hénaut ◽  
Vincent Mirallés ◽  
Abdulkareem AlSofi

Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and others chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water:oil ratio using dead crude oil and synthetic representative brine. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used jar tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. On the basis of those results, we conclude that for our case study, centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.


2018 ◽  
Author(s):  
Zhangcong Liu ◽  
Changchun Chen ◽  
Xue Lv ◽  
Zhaopeng Yang ◽  
Yang Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document