New Correlation for Calculation of Hydrocarbon Gas Minimum Miscibility Pressure (MMP) Using Wide Experimental Data

2013 ◽  
Vol 31 (24) ◽  
pp. 2577-2584 ◽  
Author(s):  
M. Ghorbani ◽  
A. Momeni ◽  
Babak Morady
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Zhang ◽  
Dali Hou ◽  
Kai Li

Minimum miscibility pressure (MMP), which plays an important role in miscible flooding, is a key parameter in determining whether crude oil and gas are completely miscible. On the basis of 210 groups of CO2-crude oil system minimum miscibility pressure data, an improved CO2-crude oil system minimum miscibility pressure correlation was built by modified conjugate gradient method and global optimizing method. The new correlation is a uniform empirical correlation to calculate the MMP for both thin oil and heavy oil and is expressed as a function of reservoir temperature, C7+molecular weight of crude oil, and mole fractions of volatile components (CH4and N2) and intermediate components (CO2, H2S, and C2~C6) of crude oil. Compared to the eleven most popular and relatively high-accuracy CO2-oil system MMP correlations in the previous literature by other nine groups of CO2-oil MMP experimental data, which have not been used to develop the new correlation, it is found that the new empirical correlation provides the best reproduction of the nine groups of CO2-oil MMP experimental data with a percentage average absolute relative error (%AARE) of 8% and a percentage maximum absolute relative error (%MARE) of 21%, respectively.


Author(s):  
K A Kazim ◽  
B Maiti ◽  
P Chand

Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new correlation to predict the head reduction factor for centrifugal pumps handling solids has been developed. This correlation takes into account the individual effect of particle size, particle size distribution, specific gravity and concentration of solids on the centrifugal pump performance characteristics. The range of validity of the correlation has been verified by experiment and by using experimental data available from the literature. The present correlation shows better agreement with the experimental data than existing correlations.


Author(s):  
Wu Dong-run ◽  
Teng Jin-fang ◽  
Qiang Xiao-qing ◽  
Feng Jin-zhang

This paper applies a new analytical/empirical method to formulate the off-design deviation angle correlation of axial flow compressor blade elements. An implicit function of deviation angle is used to map off-design deviation curves into linear correlations (minimum linear correlation coefficient R = 0.959 in this paper). Solution of the coefficients in the correlation is given through the study of classical theories and statistical analysis of the experimental data. The off-design deviation angle can be calculated numerically. The approach requires only knowledge of the blade element geometry. The comparison among 2 classical correlations and the new correlation proposed in this paper shows the new correlation has minimum error over the entire range of incidence angle while classical correlations show high reliability only in a limited range. Experimental data in this paper is collected from NASA’s open technical reports. Rotors and stators are studied together. Considering there is significant deviation angle variation along spanwise direction, only data at 50% span is studied, if possible. The error among experimental data, statistical regressions of the experimental data, and numerical results based on the new correlation is discussed. It has to be noted that the influence of the flow condition other than incidence angle is only being discussed but with less break through.


2019 ◽  
Author(s):  
Mohammad Rasheed Khan ◽  
Shams Kalam ◽  
Rizwan Ahmed Khan ◽  
Zeeshan Tariq ◽  
Abdulazeez Abdulraheem

Author(s):  
Xiangfei Kong ◽  
Huixiong Li ◽  
Changjiang Liao ◽  
Xianliang Lei ◽  
Qian Zhang

Supercritical pressure water has been widely used in many industrial fields, such as fossil-fired power plants and nuclear reactors because mainly of its high thermal efficiencies. Although many empirical correlations for heat transfer coefficients of supercritical pressure water have been proposed by different authors based on different experimental data base, there exist remarkable discrepancies between the predicted heat transfer coefficients of different correlations under even the same condition. Heat transfer correlations with good prediction performance are of considerable significance for developing supercritical (ultra-supercritical) pressure boilers and SCWRs. In this paper, the experimental data (about 7389 experimental data points) and 30 existing empirical correlations for heat transfer of supercritical pressure water (SCW) flowing in vertical upward tubes are collected from the open literatures. Evaluations of the prediction performance of the existing correlations are conducted based on the collected experimental data, and a detailed multi-collinearity analysis has been made on different correction factors involved in the existing correlations, and then based on the collected experimental data, a new heat transfer correlation is developed for the supercritical pressure water flowing in vertical upward tubes under normal and enhanced heat transfer mode. Compared with the existing correlations, the new correlation exhibits good prediction accuracy, with a mean absolute deviation (MAD) of 9.63%.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Antai Liu ◽  
Changqi Yan ◽  
Fuqiang Zhu ◽  
Haifeng Gu ◽  
Suijun Gong

As two important parameters, the velocity of disturbance wave and the wall shear stress in annular flow are very important to solve the closed equations of the mechanical model for annular flow. In this study, the disturbance wave velocity and wall shear stress of annular flow in a vertical narrow rectangular channel with a cross section of 70 mm × 2 mm were studied. According to the experimental results, it is found that the wave velocity and wall shear stress of disturbance wave increase with increasing gas phase velocity and liquid phase velocity. Also, existing correlations for predicting the velocity of disturbance wave were summarized and evaluated using the current experimental data. A new correlation for wall shear stress based on the disturbance wave velocity has been proposed. Compared with the existing correlation for predicting wall shear stress, this new correlation can well predict the current experimental data and MAPE is only 7.32%.


Sign in / Sign up

Export Citation Format

Share Document