Investigating the flexibility of attentional orienting in multiple modalities: Are spatial and temporal cues used in the context of spatiotemporal probabilities?

2021 ◽  
Vol 29 (2) ◽  
pp. 105-117
Author(s):  
Colin S. Flowers ◽  
Roman Palitsky ◽  
Daniel Sullivan ◽  
Mary A. Peterson
2021 ◽  
Author(s):  
Assaf Breska ◽  
Richard B. Ivry

AbstractA functional benefit of attention is to proactively enhance perceptual sensitivity in space and time. Although attentional orienting has traditionally been associated with cortico-thalamic networks, recent evidence has shown that individuals with cerebellar degeneration (CD) show a reduced reaction time benefit from cues that enable temporal anticipation. While this deficit may reflect impairment in anticipatory motor preparation, it could also arise from cerebellar contribution to attentional modulation in time of perceptual sensitivity. To examine this, we tested CD participants on a non-speeded, challenging perceptual discrimination task, asking if they benefit from temporal cues. Strikingly, the CD group showed no duration-specific perceptual sensitivity benefit when cued by repeated but aperiodic presentation of the target interval. In contrast, they performed similar to controls when cued by a rhythmic stream. This dissociation further specifies the functional domain of the cerebellum and establishes its role in the attentional adjustment of perceptual sensitivity in time.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Assaf Breska ◽  
Richard B Ivry

A functional benefit of attention is to proactively enhance perceptual sensitivity in space and time. Although attentional orienting has traditionally been associated with cortico-thalamic networks, recent evidence has shown that individuals with cerebellar degeneration (CD) show a reduced reaction time benefit from cues that enable temporal anticipation. The present study examined whether the cerebellum contributes to the proactive attentional modulation in time of perceptual sensitivity. We tested CD participants on a non-speeded, challenging perceptual discrimination task, asking if they benefit from temporal cues. Strikingly, the CD group showed no duration-specific perceptual sensitivity benefit when cued by repeated but aperiodic presentation of the target interval. In contrast, they performed similar to controls when cued by a rhythmic stream. This dissociation further specifies the functional domain of the cerebellum and establishes its role in the attentional adjustment of perceptual sensitivity in time in addition to its well-documented role in motor timing.


2014 ◽  
Vol 23 (3) ◽  
pp. 132-139 ◽  
Author(s):  
Lauren Zubow ◽  
Richard Hurtig

Children with Rett Syndrome (RS) are reported to use multiple modalities to communicate although their intentionality is often questioned (Bartolotta, Zipp, Simpkins, & Glazewski, 2011; Hetzroni & Rubin, 2006; Sigafoos et al., 2000; Sigafoos, Woodyatt, Tuckeer, Roberts-Pennell, & Pittendreigh, 2000). This paper will present results of a study analyzing the unconventional vocalizations of a child with RS. The primary research question addresses the ability of familiar and unfamiliar listeners to interpret unconventional vocalizations as “yes” or “no” responses. This paper will also address the acoustic analysis and perceptual judgments of these vocalizations. Pre-recorded isolated vocalizations of “yes” and “no” were presented to 5 listeners (mother, father, 1 unfamiliar, and 2 familiar clinicians) and the listeners were asked to rate the vocalizations as either “yes” or “no.” The ratings were compared to the original identification made by the child's mother during the face-to-face interaction from which the samples were drawn. Findings of this study suggest, in this case, the child's vocalizations were intentional and could be interpreted by familiar and unfamiliar listeners as either “yes” or “no” without contextual or visual cues. The results suggest that communication partners should be trained to attend to eye-gaze and vocalizations to ensure the child's intended choice is accurately understood.


2017 ◽  
Vol 76 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Hélène Maire ◽  
Renaud Brochard ◽  
Jean-Luc Kop ◽  
Vivien Dioux ◽  
Daniel Zagar

Abstract. This study measured the effect of emotional states on lexical decision task performance and investigated which underlying components (physiological, attentional orienting, executive, lexical, and/or strategic) are affected. We did this by assessing participants’ performance on a lexical decision task, which they completed before and after an emotional state induction task. The sequence effect, usually produced when participants repeat a task, was significantly smaller in participants who had received one of the three emotion inductions (happiness, sadness, embarrassment) than in control group participants (neutral induction). Using the diffusion model ( Ratcliff, 1978 ) to resolve the data into meaningful parameters that correspond to specific psychological components, we found that emotion induction only modulated the parameter reflecting the physiological and/or attentional orienting components, whereas the executive, lexical, and strategic components were not altered. These results suggest that emotional states have an impact on the low-level mechanisms underlying mental chronometric tasks.


2008 ◽  
Author(s):  
Kaitlin Laidlaw ◽  
Sara Stevens ◽  
Jim McAuliffe ◽  
Jay Pratt

1994 ◽  
Author(s):  
Marcia Grabowecky ◽  
Lynn C. Robertson ◽  
Anne Treisman

2013 ◽  
Author(s):  
Marcus N. Morrisey ◽  
M. D. Rutherford ◽  
Catherine L. Reed ◽  
Daniel N. McIntosh

2020 ◽  
Author(s):  
Miriam E. Weaverdyck ◽  
Mark Allen Thornton ◽  
Diana Tamir

Each individual experiences mental states in their own idiosyncratic way, yet perceivers are able to accurately understand a huge variety of states across unique individuals. How do they accomplish this feat? Do people think about their own anger in the same ways as another person’s? Is reading about someone’s anxiety the same as seeing it? Here, we test the hypothesis that a common conceptual core unites mental state representations across contexts. Across three studies, participants judged the mental states of multiple targets, including a generic other, the self, a socially close other, and a socially distant other. Participants viewed mental state stimuli in multiple modalities, including written scenarios and images. Using representational similarity analysis, we found that brain regions associated with social cognition expressed stable neural representations of mental states across both targets and modalities. This suggests that people use stable models of mental states across different people and contexts.


2020 ◽  
Author(s):  
B R Geib ◽  
R Cabeza ◽  
M G Woldorff

Abstract While it is broadly accepted that attention modulates memory, the contribution of specific rapid attentional processes to successful encoding is largely unknown. To investigate this issue, we leveraged the high temporal resolution of electroencephalographic recordings to directly link a cascade of visuo-attentional neural processes to successful encoding: namely (1) the N2pc (peaking ~200 ms), which reflects stimulus-specific attentional orienting and allocation, (2) the sustained posterior-contralateral negativity (post-N2pc), which has been associated with sustained visual processing, (3) the contralateral reduction in oscillatory alpha power (contralateral reduction in alpha > 200 ms), which has also been independently related to attentionally sustained visual processing. Each of these visuo-attentional processes was robustly predictive of successful encoding, and, moreover, each enhanced memory independently of the classic, longer-latency, conceptually related, difference-due-to memory (Dm) effect. Early latency midfrontal theta power also promoted successful encoding, with at least part of this influence being mediated by the later latency Dm effect. These findings markedly expand current knowledge by helping to elucidate the intimate relationship between attentional modulations of perceptual processing and effective encoding for later memory retrieval.


Sign in / Sign up

Export Citation Format

Share Document