Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure

Biomarkers ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Naresh Dumala ◽  
Bhanuramya Mangalampalli ◽  
Sarika Srinivas Kalyan Kamal ◽  
Paramjit Grover
Mutagenesis ◽  
2017 ◽  
Vol 32 (4) ◽  
pp. 417-427 ◽  
Author(s):  
Naresh Dumala ◽  
Bhanuramya Mangalampalli ◽  
Srinivas Chinde ◽  
Srinivas Indu Kumari ◽  
Mohammad Mahoob ◽  
...  

Author(s):  
HAMIDA HAMDI

Objective: Despite the widespread of nickel oxide nanoparticles (NiO NPs) and their benefits in all fields, they have many negative effects on human life, especially expectant mothers and their fetus. The purpose of this study was to investigate the possible maternal and developmental toxicity-induced by NiO NPs administration during gestation. Methods: Three groups of pregnant rats were administered orally during days 5–19 of gestation, the pregnant rats were haphazardly designed into three groups (six rat/group), as follows: Control group and NiO NPs administered groups, low (4 mg/kg), and high (8 mg/kg) doses. Results: NiO NPs administration resulted in severe maternal and developmental toxicity which included reduction in uterine weight, mother weight gain, the average weight of placenta, the number corpora lutea, implantation sites, and the number of live fetuses. Furthermore, high pre/ postimplantation, fetal growth retardation, and morphological and skeletal anomalies, an elevation in liver and brain DNA damage in both mother and fetus, and histopathological alterations in different tissues (placenta, liver, kidney, and brain) of pregnant rats and fetuses. Lipid peroxidation showed a significant elevation in maternal, fetal liver, and brain tissues of NiO NPs ‐administered rats. Furthermore, glutathione content and catalase activity were decreased in both tissues of NiO NPs‐administered rats. Conclusion: Finally, the detrimental impacts of NiO NPs in dams and fetuses probably through its potential generation of reactive oxygen species.


Author(s):  
B.A. Katsnelson ◽  
M.P. Sutunkova ◽  
L.I. Privalova ◽  
S.N. Solovjeva ◽  
V.B. Gurvich ◽  
...  

The article presents in an experiment obtained principal results based on repeated low-level inhalation exposures of laboratory animals (white rats, outbred) to nickel oxide nanoparticles with a diameter of (23 ± 5) nm, 4 hours a day, 5 times a week for up to 10 months in a «nose only» installation. It was shown that non-specific body reactions to the action of NiO NPs include: diverse manifestations of systemic toxicity with a particularly pronounced influence on liver and kidney function, redox balance, damage to some areas of brain tissue, associated with proven movement of the nanoparticles themselves from the nasal mucosa along the olfactory tract; some cytological signs of probable development for allergic syndrome; paradoxically low severity of pulmonary pathology by pneumoconiotic type explained by a small chronic delay of nanoparticles in the lungs; the genotoxic effect of the organismal level, even at those low levels of chronic exposure, at which systemic toxicity is rather poorly. Along with that, NiO NPs also induce phase-stimulation of erythropoiesis, which is relatively specific for the toxic nickel effects.


2021 ◽  
Vol 14 (3) ◽  
pp. 443-453
Author(s):  
Mohammad Amin Jadidi Kouhbanani ◽  
Yasin Sadeghipour ◽  
Mina Sarani ◽  
Erfan Sefidgar ◽  
Saba Ilkhani ◽  
...  

2021 ◽  
pp. 074823372110009
Author(s):  
Dalia Abdel Moneim Kheirallah ◽  
Awatef Mohamed Ali ◽  
Salah Eldein Osman ◽  
Amal Mohamed Shouman

Nickel nanoparticles (Ni-NPs) have advantageous applications in the industry; however, little is known of their adverse effects on biological tissues. In the present study, the ground beetle Blaps polycresta was employed as a sensitive indicator for nickel oxide nanoparticles (NiO-NPs) toxicity. Adult male beetles were injected with six dose levels of NiO-NPs (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g body weight). Mortality was reported daily over 30 days under laboratory conditions to establish an LD50. Nickel was detected in the testicular tissues of the beetles using X-ray analysis and transmission electronic microscopy. Beetles treated with the sublethal dose of 0.02 mg/g were selected to observe molecular, cellular, and subcellular changes. Gene transcripts of HSP70, HSP90, and MT1 were found to be increased >2.5-, 1.5-, and 2-fold, respectively, in the treated group compared with the controls. Decreased gene expression of AcPC01, AcPC02, and AcPC04 (≤1.5-, ≤2-, and < 2.5-fold, respectively, vs. controls) also were reported in the treated group. Under light microscopy, various structural changes were observed in the testicular tissues of the treated beetles. Ultrastructure observations using scanning and transmission electron microscopy showed severe damage to the subcellular organelles as well as deformities of the heads and flagella of the spermatozoa. Therefore, the present study postulated the impact of NiO-NPs in an ecological model.


Sign in / Sign up

Export Citation Format

Share Document