The relative contributions of menopause and aging to postmenopausal reduction in intervertebral disk height

Climacteric ◽  
2007 ◽  
Vol 10 (4) ◽  
pp. 298-305 ◽  
Author(s):  
M. Gambacciani ◽  
A. Pepe ◽  
B. Cappagli ◽  
E. Palmieri ◽  
A. R. Genazzani
Author(s):  
Nattawut Niljianskul

Objective: This study retrospectively evaluated the clinical and radiographic outcomes following the use of a lordotic cage in anterior cervical discectomy and fusion (ACDF).Material and Methods: All patients who underwent ACDF, at Vajira Hospital; between May 2017 and May 2020, were included in this study. Radiographic images were used to evaluate the device-level Cobb angle (DLCA), segmental Cobb angle (SCA), global Cobb angle (GCA), sagittal vertical axis (SVA), sagittal alignment (SA), and intervertebral disk height. The visual analog scale (VAS) for neck pain, and the Japanese Orthopaedic Association (JOA) score were reviewed as part of the patient’s medical records. Preoperative DLCA, SCA, GCA, SVA, SA, and intervertebral disk height measurements were compared with postoperative measurements at 1 year.Results: A total of 51 patients (88 disks), having undergone ACDF with lordotic cage insertion were included in this study. The initial curvature of the cervical spine was diagnosed as kyphosis in 30 (58.8%) patients, and as lordosis in 21 (41.2%) patients. There was significant improvement in the VAS, JOA, DLCA, SCA, GCA, SVA, SA, and intervertebral disk height after ACDF (p-value<0.050). In patients with preoperative kyphosis, the greatest changes were observed in the GCA (p-value=0.004).Conclusion: The use of a lordotic cage in ACDF improved both the clinical and radiographic outcomes of all postoperative parameters, regardless of the patient’s preoperative cervical spine curvature; although, patients with preoperative kyphosis had greater improvement in GCA.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Cornelis P. L. Paul ◽  
Kaj S. Emanuel ◽  
Idsart Kingma ◽  
Albert J. van der Veen ◽  
Roderick M. Holewijn ◽  
...  

Intervertebral disk (IVD) degeneration is commonly described by loss of height and hydration. However, in the first stage of IVD degeneration, this loss has not yet occurred. In the current study, we use an ex vivo degeneration model to analyze the changes in IVDs mechanical behavior in the first phase of degeneration. We characterize these changes by stretched-exponential fitting, and suggest the fitted parameters as markers for early degeneration. Enzymatic degeneration of healthy lumbar caprine IVDs was induced by injecting 100 μL of Chondroïtinase ABC (Cabc) into the nucleus. A no-intervention and phosphate buffered saline (PBS) injected group were used as controls. IVDs were cultured in a bioreactor for 20 days under diurnal, simulated-physiological loading (SPL) conditions. Disk deformation was continuously monitored. Changes in disk height recovery behavior were quantified using stretched-exponential fitting. Disk height, histological sections, and water- and glycosaminoglycan (GAG)-content measurements were used as gold standards for the degenerative state. Cabc injection caused significant GAG loss from the nucleus and had detrimental effects on poro-elastic mechanical properties of the IVDs. These were progressive over time, with a propensity toward more linear recovery behavior. On histological sections, both PBS and Cabc injected IVDs showed moderate degeneration. A small GAG loss yields changes in IVD recovery behavior, which can be quantified with stretched-exponential fitting. Parameters changed significantly compared to control. Studies on disk degeneration and biomaterial engineering for degenerative disk disease (DDD) could benefit from focusing on IVD biomechanical behavior rather than height and water-content, as a marker for early disk degeneration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiexing Wu ◽  
Yijie Liu ◽  
Jiacheng Du ◽  
Xiaoping Li ◽  
Jiayi Lin ◽  
...  

ObjectiveThe aim of this study is to verify whether melatonin (Mel) could mitigate intervertebral disk degeneration (IVDD) in rats and to investigate the potential mechanism of it.MethodA rat acupuncture model of IVDD was established with intraperitoneal injection of Mel. The effect of Mel on IVDD was analyzed via radiologic and histological evaluations. The specific Mel receptors were investigated in both the nucleus pulposus (NP) and cartilaginous endplates (EPs). In vitro, EP cartilaginous cells (EPCs) were treated by different concentrations of Mel under lipopolysaccharide (LPS) and Luzindole conditions. In addition, LPS-induced inflammatory response and matrix degradation following nuclear factor kappa-B (NF-κB) pathway activation were investigated to confirm the potential mechanism of Mel on EPCs.ResultsThe percent disk height index (%DHI) and MRI signal decreased after initial puncture in the degeneration group compared with the control group, while Mel treatment protected disk height from decline and prevented the loss of water during the degeneration process. In the meantime, the histological staining of the Mel groups showed more integrity and well-ordered construction of the NP and EPs in both low and high concentration than that of the degeneration group. In addition, more deep-brown staining of type II collagen (Coll-II) was shown in the Mel groups compared with the degeneration group. Furthermore, in rat samples, immunohistochemical staining showed more positive cells of Mel receptors 1a and 1b in the EPs, instead of in the NP. Moreover, evident osteochondral lacuna formation was observed in rat EPs in the degeneration group; after Mel treatment, the osteochondral destruction alleviated accompanying fewer receptor activator for nuclear factor-κB ligand (RANKL) and tartrate-resistant acid phosphatase (TRAP)-stained positive cells expressed in the EPs. In vitro, Mel could promote the proliferation of EPCs, which protected EPCs from degeneration under LPS treatment. What is more, Mel downregulated the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway through binding to its specific receptors.ConclusionThese results indicate that Mel protects the integrity of the EPs and attenuates IVDD by binding to the Mel receptors in the EPs. It may alleviate the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Marco Cannella ◽  
Jessica L. Isaacs ◽  
Shanee Allen ◽  
Argjenta Orana ◽  
Edward Vresilovic ◽  
...  

Nucleus pulposus replacement and augmentation has been proposed to restore disk mechanics in early stages of degeneration with the option of providing a minimally invasive procedure for pain relief to patients with an earlier stage of degeneration. The goal of this paper is to examine compressive stability of the intervertebral disk after either partial nucleus replacement or nuclear augmentation in the absence of denucleation. Thirteen human cadaver lumbar anterior column units were used to study the effects of denucleation and augmentation on the compressive mechanical behavior of the human intervertebral disk. Testing was performed in axial compression after incremental steps of partial denucleation and subsequent implantation of a synthetic hydrogel nucleus replacement. In a separate set of experiments, the disks were not denucleated but augmented with the same synthetic hydrogel nucleus replacement. Neutral zone, range of motion, and stiffness were measured. The results showed that compressive stabilization of the disk can be re-established with nucleus replacement even for partial denucleation. Augmentation of the disk resulted in an increase in disk height and intradiskal pressure that were linearly related to the volume of polymer implanted. Intervertebral disk instability, evidenced by increased neutral zone and ranges of motion, associated with degeneration can be restored by volume filling of the nucleus pulposus using the hydrogel device presented here.


2019 ◽  
Vol 24 (5) ◽  
pp. 14-15
Author(s):  
Jay Blaisdell ◽  
James B. Talmage

Abstract Ratings for “non-specific chronic, or chronic reoccurring, back pain” are based on the diagnosis-based impairment method whereby an impairment class, usually representing a range of impairment values within a cell of a grid, is selected by diagnosis and “specific criteria” (key factors). Within the impairment class, the default impairment value then can be modified using non-key factors or “grade modifiers” such as functional history, physical examination, and clinical studies using the net adjustment formula. The diagnosis of “nonspecific chronic, or chronic reoccurring, back pain” can be rated in class 0 and 1; the former has a default value of 0%, and the latter has a default value of 2% before any modifications. The key concept here is that the physician believes that the patient is experiencing pain, yet there are no related objective findings, most notably radiculopathy as distinguished from “nonverifiable radicular complaints.” If the individual is found not to have radiculopathy and the medical record shows that the patient has never had clinically verifiable radiculopathy, then the diagnosis of “intervertebral disk herniation and/or AOMSI [alteration of motion segment integrity] cannot be used.” If the patient is asymptomatic at maximum medical improvement, then impairment Class 0 should be chosen, not Class 1; a final whole person impairment rating of 1% indicates incorrect use of the methodology.


2004 ◽  
Vol 9 (5) ◽  
pp. 1-11
Author(s):  
Patrick R. Luers

Abstract The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, defines a motion segment as “two adjacent vertebrae, the intervertebral disk, the apophyseal or facet joints, and ligamentous structures between the vertebrae.” The range of motion from segment to segment varies, and loss of motion segment integrity is defined as “an anteroposterior motion of one vertebra over another that is greater than 3.5 mm in the cervical spine, greater than 2.5 mm in the thoracic spine, and greater than 4.5 mm in the lumbar spine.” Multiple etiologies are associated with increased motion in the cervical spine; some are physiologic or compensatory and others are pathologic. The standard radiographic evaluation of instability and ligamentous injury in the cervical spine consists of lateral flexion and extension x-ray views, but no single pattern of injury is identified in whiplash injuries. Fluoroscopy or cineradiographic techniques may be more sensitive than other methods for evaluating subtle abnormal motion in the cervical spine. The increased motion thus detected then must be evaluated to determine whether it represents normal physiologic motion, normal compensatory motion, motion related to underlying degenerative disk and/or facet disease, or increased motion related to ligamentous injury. Imaging studies should be performed and interpreted as instructed in the AMA Guides.


2012 ◽  
Vol 2 (1_suppl) ◽  
pp. s-0032-1319991-s-0032-1319991
Author(s):  
P. Madiraju ◽  
R. Gawri ◽  
J. Antoniou ◽  
F. Mwale

2012 ◽  
Vol 2 (1_suppl) ◽  
pp. s-0032-1319972-s-0032-1319972
Author(s):  
T. Law ◽  
M. P. Anthony ◽  
D. Samartzis ◽  
Q. Chan ◽  
M. Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document