cartilaginous endplate
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 1)

Bone Research ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Zuqiang Wang ◽  
Hangang Chen ◽  
Qiaoyan Tan ◽  
Junlan Huang ◽  
Siru Zhou ◽  
...  

AbstractThe intervertebral disc (IVD) is the largest avascular tissue. Hypoxia-inducible factors (HIFs) play essential roles in regulating cellular adaptation in the IVD under physiological conditions. Disc degeneration disease (DDD) is one of the leading causes of disability, and current therapies are ineffective. This study sought to explore the role of HIFs in DDD pathogenesis in mice. The findings of this study showed that among HIF family members, Hif1α was significantly upregulated in cartilaginous endplate (EP) and annulus fibrosus (AF) tissues from human DDD patients and two mouse models of DDD compared with controls. Conditional deletion of the E3 ubiquitin ligase Vhl in EP and AF tissues of adult mice resulted in upregulated Hif1α expression and age-dependent IVD degeneration. Aberrant Hif1α activation enhanced glycolytic metabolism and suppressed mitochondrial function. On the other hand, genetic ablation of the Hif1α gene delayed DDD pathogenesis in Vhl-deficient mice. Administration of 2-methoxyestradiol (2ME2), a selective Hif1α inhibitor, attenuated experimental IVD degeneration in mice. The findings of this study show that aberrant Hif1α activation in EP and AF tissues induces pathological changes in DDD, implying that inhibition of aberrant Hif1α activity is a potential therapeutic strategy for DDD.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haiwei Xu ◽  
Yongjin Li ◽  
Jianhua Li ◽  
Zhenxin Huo ◽  
Guowang Li ◽  
...  

Background. Intervertebral disc degeneration (IDD) disease is a global challenge because of its predominant pathogenic factor in triggering low back pain, whereas cartilaginous endplate degeneration (CEPD) is the main cause of IDD. Accumulating evidence have indicated that the differentially expressed microRNAs (DEMs) and differentially expressed genes (DEGs) have been determined to be involved in multiple biological processes to mediate CEPD progression. However, the differentially expressed circular RNAs (DECs) and their potential biofunctions in CEPD have not been identified. Methods. GSE153761 dataset was analyzed using R software to predict DECs, DEMs, and DEGs. Pathway enrichment analysis of DEGs and host genes of DECs and protein-protein interaction network of DEGs were conducted to explore their potential biofunctions. Furthermore, we explore the potential relationship between DEGs and DECs. Results. There were 74 DECs, 17 DEMs, and 68 DEGs upregulated whereas 50 DECs, 16 DEMs, and 67 DEGs downregulated in CEPD group. Pathway analysis unveiled that these RNAs might regulate CEPD via mediating inflammatory response, ECM metabolism, chondrocytes apoptosis, and chondrocytes growth. A total of 17 overlapping genes were predicted between the host genes of DEGs and DECs, such as SDC1 and MAOA. Moreover, 6 upregulated DECs, of which hsa_circ_0052830 was the most upregulated circRNA in CEPD, were derived from the host genes SDC1, whereas 8 downregulated DECs were derived from the host genes MAOA. Conclusion. This will provide novel clues for future experimental studies to elucidate the pathomechanism of CEPD and therapeutic targets for CEPD-related diseases.


2021 ◽  
Vol 22 (10) ◽  
pp. 5281
Author(s):  
Jin-Woo Kim ◽  
Neunghan Jeon ◽  
Dong-Eun Shin ◽  
So-Young Lee ◽  
Myongwhan Kim ◽  
...  

The intervertebral disc (IVD) is a complex joint structure comprising three primary components—namely, nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplate (CEP). The IVD retrieves oxygen from the surrounding vertebral body through CEP by diffusion and likely generates ATP via anaerobic glycolysis. IVD degeneration is characterized by a cascade of cellular, compositional, structural changes. With advanced age, pronounced changes occur in the composition of the disc extracellular matrix (ECM). NP and AF cells in the IVD possess poor regenerative capacity compared with that of other tissues. Hypoxia-inducible factor (HIF) is a master transcription factor that initiates a coordinated cellular cascade in response to a low oxygen tension environment, including the regulation of numerous enzymes in response to hypoxia. HIF-1α is essential for NP development and homeostasis and is involved in various processes of IVD degeneration process, promotes ECM in NP, maintains the metabolic activities of NP, and regulates dystrophic mineralization of NP, as well as angiogenesis, autophagy, and apoptosis during IVD degeneration. HIF-1α may, therefore, represent a diagnostic tool for early IVD degeneration and a therapeutic target for inhibiting IVD degeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaofeng Chen ◽  
Weijun Guo ◽  
Hao Li ◽  
Xi Li ◽  
Zhuangxun Han ◽  
...  

In order to carry out the evaluation of cartilaginous endplate degeneration based on magnetic resonance imaging (MRI), this paper retrospectively analyzed the MRI data from 120 cases of patients who were diagnosed as lumbar intervertebral disc degeneration and underwent MRI examinations in the designated hospital of this study from June 2018 to June 2020. All cases underwent conventional sagittal and transverse T1WI and T2WI scans, and some cases were added with sagittal fat-suppression T2WI scans; then, the number of degenerative cartilaginous endplates and its ratio to degenerative lumbar intervertebral discs were counted and calculated, and the T1WI and T2WI signal characteristics of each degenerative cartilage endplate and its correlation with cartilaginous endplate degeneration were summarized, compared, and analyzed to evaluate the cartilaginous endplate degeneration by those magnetic resonance information. The study results show that there were 33 cases of cartilaginous endplate degeneration, accounting for 27.50% of all those 120 patients with lumbar intervertebral disc degeneration (54 degenerative endplates in total), including 9 cases with low T1WI and high T2WI signals, 5 cases with high T1WI and low T2WI signals, 12 cases with high and low mixed T1WI and high or mixed T2WI signals, and 4 cases with both low T1WI and T2WI signals. Therefore, MRI scanning can clearly present the abnormal signals of lumbar intervertebral disc and cartilaginous endplate degeneration, accurately identity their lesion locations, and type their degenerative characteristics, which may be best inspection method for the evaluation of cartilaginous endplate degeneration in the early diagnosis of intervertebral disc degeneration. The study results of this paper provide a reference for further researches on the evaluation of cartilaginous endplate degeneration based on magnetic resonance imaging.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jinliang Lai ◽  
Guanglin Ji ◽  
Yuqiao Zhou ◽  
Jincai Chen ◽  
Min Zhou ◽  
...  

Abstract Background This study was undertaken to establish a rat bipedal walking model of cervical kyphosis (CK) associated with chronic forward flexed neck and assess the effects of chronic forward flexed neck on endplate chondrocytes. Methods Forty-eight 1-month-old Sprague-Dawley rats were randomly divided into 3 groups: forward flexed neck group (n = 16), bipedal group (n = 16), and normal group (n = 16). Cervical curves were analyzed on a lateral cervical spine X-ray using Harrison’s posterior tangent method before the experiment and at 2-week intervals for a 6-week period. Histologic changes in cartilaginous endplate chondrocytes were observed using hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), and terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP nick-end labeling. Results Radiographic findings suggested a significantly decreased cervical physiological curvature in the forward flexed neck group over the 6-week follow-up; normal cervical curves were maintained in other groups. The average cervical curvature (C2–C7) was − 7.6 ± 0.9° in the forward flexed neck group before the experiment, − 3.9 ± 0.8° at 2 weeks post-experiment, 10.7 ± 1.0° at 4 weeks post-experiment, and 20.5 ± 2.1° at the last follow-up post-experiment. Histologically, results of H&E staining unveiled that cartilaginous endplate chondrocytes were arranged in an irregular fashion, with the decreased number at the observation period; the incidence of apoptotic cells in the forward flexed neck group was noticeably higher at the 6-week follow-up than that in other groups. Conclusions CK developed as the result of chronic forward flexed neck. Histologic changes suggested that chondrocyte apoptosis may play a critical role in the development of cervical kyphotic deformity associated with chronic forward flexed neck.


Sign in / Sign up

Export Citation Format

Share Document