Galangin controls streptozotocin-caused glucose homeostasis and reverses glycolytic and gluconeogenic enzyme changes in rats

2018 ◽  
Vol 126 (2) ◽  
pp. 101-106 ◽  
Author(s):  
Amal A. Aloud ◽  
Veeramani Chinnadurai ◽  
Govindasamy Chandramohan ◽  
Mohammed A. Alsaif ◽  
Khalid S. Al-Numair
1988 ◽  
Vol 36 (3) ◽  
pp. 285-289 ◽  
Author(s):  
B R Cole ◽  
J G Boylan ◽  
T E Bross ◽  
H B Burch ◽  
O H Lowry

The kidney is an extremely heterogeneous organ, with morphological, physiological, and metabolic changes occurring from segment to segment along each nephron. To determine the heterogeneity that might exist within discrete anatomical segments of rabbit nephron, we developed a technique for making quantitative enzyme assays in serial samples, about 100 micron long, along identified segments of the nephron. Results for three enzymes in proximal convoluted and straight tubules show that adenylate kinase, an enzyme of high-energy phosphate metabolism, gradually decreases along the S1 and S2 segments of the proximal tubule, with no abrupt changes. Fructose bisphosphatase, a gluconeogenic enzyme, is high along the major portion of the proximal tubule but plummets along the final millimeter of S3. Conversely, phosphofructokinase, a glycolytic enzyme, is very low along the proximal tubule but increases sharply within the final millimeter. These data underscore the biochemical heterogeneity of the nephron, illustrating the enzyme levels may change markedly even within anatomically defined regions. They also suggest the importance of further studies of this type and demonstrate a practical means for such studies.


Author(s):  
P. J. Melnick ◽  
J. W. Cha ◽  
E. Samouhos

Spontaneous mammary tumors in females of a high tumor strain of C3H mice were cut into small fragments that were Implanted into the subcutaneous tissue of the back of males of the same strain, where they grew as transplantable tumors. When about Cm. In diameter daily fractional radiation was begun, applied to the tumors, the rest of the body being shielded by a lead shield. Two groups were treated with 150 and 200 r X-ray dally, of half value layer 0.6mm. copper; a third group was treated with 500 r cobalt radiation dally. The primary purpose was to examine the enzyme changes during radiation, with histochemlcal technics.


2020 ◽  
Vol 90 (1-2) ◽  
pp. 113-123
Author(s):  
Ines Schadock ◽  
Barbara G. Freitas ◽  
Irae L. Moreira ◽  
Joao A. Rincon ◽  
Marcio Nunes Correa ◽  
...  

Abstract. β-hydroxy-β-methyl butyrate (HMB) is a bioactive metabolite derived from the amino acid leucine, usually applied for muscle mass increase during physical training, as well as for muscle mass maintenance in debilitating chronic diseases. The hypothesis of the present study is that HMB is a safe supplement for muscle mass gain by strength training. Based on this, the objective was to measure changes in body composition, glucose homeostasis and hepatic metabolism of HMB supplemented mice during strength training. Two of four groups of male mice (n = 6/group) underwent an 8-week training period session (climbing stairs) with or without HMB supplementation (190 mg/kgBW per day). We observed lower body mass gain (4.9 ± 0.43% versus 1.2 ± 0.43, p < 0.001) and increased liver mass (40.9 ± 0.9 mg/gBW versus 44.8 ± 1.3, p < 0.001) in the supplemented trained group compared with the non-supplemented groups. The supplemented trained group had an increase in relative adipose tissue mass (12.4 ± 0.63 mg/gBW versus 16.1 ± 0.88, P < 0.01) compared to the non-supplemented untrained group, and an increase in fasting blood glucose (111 ± 4.58 mg/dL versus 122 ± 3.70, P < 0.05) and insulin resistance (3.79 ± 0.19 % glucose decay/min versus 2.45 ± 0.28, P < 0.05) comparing with non-supplemented trained group. Adaptive heart hypertrophy was observed only in the non-supplemented trained group (4.82 ± 0.05 mg/gBW versus 5.12 ± 0.13, P < 0.05). There was a higher hepatic insulin-like growth factor-1 expression (P = 0.002) in supplemented untrained comparing with non-supplemented untrained group. Gene expression of gluconeogenesis regulatory factors was increased by training and reduced by HMB supplementation. These results confirm that HMB supplementation associated with intensive training protocol drives changes in glucose homeostasis and liver metabolism in mice.


2017 ◽  
Vol 12 (S 01) ◽  
pp. S1-S84
Author(s):  
T Laeger ◽  
C Baumeier ◽  
J Würfel ◽  
A Schürmann
Keyword(s):  

2018 ◽  
Vol 239 (3) ◽  
pp. 313-324 ◽  
Author(s):  
Lewin Small ◽  
Henry Gong ◽  
Christian Yassmin ◽  
Gregory J Cooney ◽  
Amanda E Brandon

One major factor affecting physiology often overlooked when comparing data from animal models and humans is the effect of ambient temperature. The majority of rodent housing is maintained at ~22°C, the thermoneutral temperature for lightly clothed humans. However, mice have a much higher thermoneutral temperature of ~30°C, consequently data collected at 22°C in mice could be influenced by animals being exposed to a chronic cold stress. The aim of this study was to investigate the effect of housing temperature on glucose homeostasis and energy metabolism of mice fed normal chow or a high-fat, obesogenic diet (HFD). Male C57BL/6J(Arc) mice were housed at standard temperature (22°C) or at thermoneutrality (29°C) and fed either chow or a 60% HFD for 13 weeks. The HFD increased fat mass and produced glucose intolerance as expected but this was not exacerbated in mice housed at thermoneutrality. Changing the ambient temperature, however, did alter energy expenditure, food intake, lipid content and glucose metabolism in skeletal muscle, liver and brown adipose tissue. Collectively, these findings demonstrate that mice regulate energy balance at different housing temperatures to maintain whole-body glucose tolerance and adiposity irrespective of the diet. Despite this, metabolic differences in individual tissues were apparent. In conclusion, dietary intervention in mice has a greater impact on adiposity and glucose metabolism than housing temperature although temperature is still a significant factor in regulating metabolic parameters in individual tissues.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1883-P
Author(s):  
HUI YAN ◽  
YUXIN WU ◽  
QUAN PAN ◽  
ZHENG SHEN ◽  
HONGTING ZHENG ◽  
...  
Keyword(s):  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1879-P
Author(s):  
JOSE M. IRIMIA-DOMINGUEZ ◽  
ANDREW J. LUTKEWITTE ◽  
PATRICK T. FUEGER

Sign in / Sign up

Export Citation Format

Share Document