The Relation of White Matter Hyperintensities to Cognitive Performance in the Normal Old: Education Matters

2006 ◽  
Vol 13 (3-4) ◽  
pp. 326-340 ◽  
Author(s):  
Robert D. Nebes ◽  
Carolyn C. Meltzer ◽  
Ellen M. Whyte ◽  
Joelle M. Scanlon ◽  
Edythe M. Halligan ◽  
...  
Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Yan Chen ◽  
Renyuan Liu ◽  
Shuwei Qiu ◽  
Yun Xu

Introduction: Cerebral White matter hyperintensities(WMH) are frequent findings on MRI scan. They are well known to correlate with vascular cognitive impairment(VCI). However, controversies still remain about the relationship between WMH locations and cognitive function across studies. Hypothesis: Periventricular WMHs(PWH) rather than deep WMHs(DWH) are associated with cognitive decline in VCI. Methods: Fifty-nine subjects with WMHs on MRI were divided into three groups, normal control(NC), mild cognitive impairment(MCI) and vascular dementia(VaD), according to clinical manifestation and neuropsychological performance. WMH volumes were evaluated by Fazekas rating scale and segmental volumetric. Correlations between cognitive performance and WMH volumes were determined in virtue of Spearman correlation analysis. Receiver operator characteristic (ROC) curves were generated to define the classification cut-off value of WMH volumes for distinguishing VCI versus normal controls. Multiple linear regression analysis was used to predict cognitive performance with WMH volumes and locations after adjusting for sex ,age and education level. Results: Cognitive capacities were gradually declined from NC through MCI to VaD patients while WMH volumes and Fazekas scores altered oppositely. Both PWH and DWH volumes and Fazekas scores were correlated with cognitive performance, and moreover, WMH volumes were correlated with Fazekas scores. ROC analysis showed a cut-off value of PWH rather than DWH to distinguish VCI from NC(AUC=0.745 and 0.635, p =0.001 and 0.076, respectively). Linear regression analysis demonstrated that only PWH volumes were associated with cognitive performance( p < 0.001). Conclusion: Our study demonstrate that PWHs are independent predictors for vascular contribution in white matter lesions and suggest clinicians that PWH should be emphasized on evaluating vascular cognitive impairment related with white matter load.


2006 ◽  
Vol 20 (Supplement 2) ◽  
pp. S101 ◽  
Author(s):  
Karrah Q. Bristow ◽  
Rhoda Au ◽  
Joseph M. Massaro ◽  
Sudha Seshadri ◽  
Philip A. Wolf ◽  
...  

2020 ◽  
Vol 78 (1) ◽  
pp. 207-216
Author(s):  
Rebecca Henkel ◽  
Matthias Brendel ◽  
Marco Paolini ◽  
Eva Brendel ◽  
Leonie Beyer ◽  
...  

Background: Various reasons may lead to cognitive symptoms in elderly, including the development of cognitive decline and dementia. Often, mixed pathologies such as neurodegeneration and cerebrovascular disease co-exist in these patients. Diagnostic work-up commonly includes imaging modalities such as FDG PET, MRI, and CT, each delivering specific information. Objective: To study the informative value of neuroimaging-based data supposed to reflect neurodegeneration (FDG PET), cerebral small vessel disease (MRI), and cerebral large vessel atherosclerosis (CT) with regard to cognitive performance in patients presenting to our memory clinic. Methods: Non-parametric partial correlations and an ordinal logistic regression model were run to determine relationships between scores for cortical hypometabolism, white matter hyperintensities, calcified plaque burden, and results from Mini-Mental State Examination (MMSE). The final study group consisted of 162 patients (female: 94; MMSE: 6–30). Results: Only FDG PET data was linked to and predicted cognitive performance (r(157) = –0.388, p < 0.001). Overall, parameters linked to cerebral small and large vessel disease showed no significant association with cognition. Further findings demonstrated a relationship between white matter hyperintensities and FDG PET data (r(157) = 0.230, p = 0.004). Conclusion: Only FDG PET imaging mirrors cognitive performance, presumably due to the examination’s ability to reflect neurodegeneration and vascular dysfunction, thus capturing a broader spectrum of pathologies. This makes the examination a useful imaging-based diagnostic tool in the work-up of patients presenting to a memory clinic. Parameters of vascular dysfunction alone as depicted by conventional MRI and CT are less adequate in such a situation, most likely because they reflect one pathology complex only.


2021 ◽  
pp. 1-12
Author(s):  
Regina Silva Paradela ◽  
Naomi Vidal Ferreira ◽  
Mariana Penteado Nucci ◽  
Brenno Cabella ◽  
Luiza Menoni Martino ◽  
...  

Background: Socioeconomic factors are important contributors to brain health. However, data from developing countries (where social inequalities are the most prominent) are still scarce, particularly about hypertensive individuals. Objective: To evaluate the relationship between socioeconomic index, cognitive function, and cortical brain volume, as well as determine whether white matter hyperintensities are mediators of the association of the socioeconomic index with cognitive function in hypertensive individuals. Methods: We assessed 92 hypertensive participants (mean age = 58±8.6 years, 65.2%female). Cognitive evaluation and neuroimaging were performed and clinical and sociodemographic data were collected using questionnaires. A socioeconomic index was created using education, income, occupation (manual or non-manual work), and race. The associations of the socioeconomic index with cognitive performance and brain volume were investigated using linear regression models adjusted for age, sex, time of hypertension since diagnosis, and comorbidities. A causal mediation analysis was also conducted. Results: Better socioeconomic status was associated with better visuospatial ability, executive function, and global cognition. We found associations between a better socioeconomic index and a higher parietal lobe volume. White matter hyperintensities were also not mediators in the relationship between the socioeconomic index and cognitive performance. Conclusion: Socioeconomic disadvantages are associated with worse cognitive performance and brain volume in individuals with hypertension.


Stroke ◽  
2004 ◽  
Vol 35 (6) ◽  
pp. 1270-1275 ◽  
Author(s):  
Emma J. Burton ◽  
Rose Anne Kenny ◽  
John O’Brien ◽  
Sally Stephens ◽  
Michael Bradbury ◽  
...  

2017 ◽  
Vol 38 (6) ◽  
pp. 996-1009 ◽  
Author(s):  
Jana Kynast ◽  
Leonie Lampe ◽  
Tobias Luck ◽  
Stefan Frisch ◽  
Katrin Arelin ◽  
...  

Age-related white matter hyperintensities (WMH) are a manifestation of white matter damage seen on magnetic resonance imaging (MRI). They are related to vascular risk factors and cognitive impairment. This study investigated the cognitive profile at different stages of WMH in a large community-dwelling sample; 849 subjects aged 21 to 79 years were classified on the 4-stage Fazekas scale according to hyperintense lesions seen on individual T2-weighted fluid-attenuated inversion recovery MRI scans. The evaluation of cognitive functioning included seven domains of cognitive performance and five domains of subjective impairment, as proposed by the DSM-5. For the first time, the impact of age-related WMH on Theory of Mind was investigated. Differences between Fazekas groups were analyzed non-parametrically and effect sizes were computed. Effect sizes revealed a slight overall cognitive decline in Fazekas groups 1 and 2 relative to healthy subjects. Fazekas group 3 presented substantial decline in social cognition, attention and memory, although characterized by a high inter-individual variability. WMH groups reported subjective cognitive decline. We demonstrate that extensive WMH are associated with specific impairment in attention, memory, social cognition, and subjective cognitive performance. The detailed neuropsychological characterization of WMH offers new therapeutic possibilities for those affected by vascular cognitive decline.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
G. Ortega ◽  
A. Espinosa ◽  
M. Alegret ◽  
GC. Monté-Rubio ◽  
O. Sotolongo-Grau ◽  
...  

Abstract Background To explore whether the combination of white matter hyperintensities (WMHs) and amyloid-beta (Aβ) deposition is associated with worse cognitive performance on cognitive composites (CCs) domain scores in individuals with subjective cognitive decline (SCD). Methods Two hundred participants from the FACEHBI cohort underwent structural magnetic resonance imaging (MRI), 18F-florbetaben positron emission tomography (FBB-PET), and neuropsychological assessment. WMHs were addressed through the Fazekas scale, the Age-Related White Matter Changes (ARWMC) scale, and the FreeSurfer pipeline. Eight CCs domain scores were created using the principal component analysis (PCA). Age, sex, education, and apolipoprotein E (APOE) were used as adjusting variables. Results Adjusted multiple linear regression models showed that FreeSurfer (B − .245; 95% CI − .1.676, − .393, p = .016) and β burden (SUVR) (B − .180; 95% CI − 2.140, − .292; p = .070) were associated with face–name associative memory CCs domain score, although the latest one was not statistically significant after correction for multiple testing (p = .070). There was non-significant interaction of these two factors on this same CCs domain score (p = .54). However, its cumulative effects on face–name associative performance indicated that those individuals with either higher WMH load or higher Aβ burden showed the worst performance on the face–name associative memory CCs domain score. Conclusions Our results suggest that increased WMH load and increased Aβ are independently associated with poorer episodic memory performance in SCD individuals, indicating a cumulative effect of the combination of these two pathological conditions in promoting lower cognitive performance, an aspect that could help in terms of treatment and prevention.


2020 ◽  
Author(s):  
Mahsa Dadar ◽  
Olivier Potvin ◽  
Richard Camicioli ◽  
Simon Duchesne ◽  

AbstractIntroductionVolumetric estimates of subcortical and cortical structures, extracted from T1-weighted MRIs, are widely used in many clinical and research applications. Here, we investigate the impact of the presence of white matter hyperintensities (WMHs) on FreeSurfer grey matter (GM) structure volumes and its possible bias on functional relationships.MethodsT1-weighted images from 1077 participants (4321 timepoints) from the Alzheimer’s Disease Neuroimaging Initiative were processed with FreeSurfer version 6.0.0. WMHs were segmented using a previously validated algorithm on either T2-weighted or Fluid-attenuated inversion recovery (FLAIR) images. Mixed effects models were used to assess the relationships between overlapping WMHs and GM structure volumes and overal WMH burden, as well as to investigate whether such overlaps impact associations with age, diagnosis, and cognitive performance.ResultsParticipants with higher WMH volumes had higher overalps with GM volumes of bilateral caudate, cerebral cortex, putamen, thalamus, pallidum, and accumbens areas (P < 0.0001). When not corrected for WMHs, caudate volumes increased with age (P < 0.0001) and were not different between cognitively healthy individuals and age-matched probable Alzheimer’s disease patients. After correcting for WMHs, caudate volumes decreased with age (P < 0.0001), and Alzheimer’s disease patients had lower caudate volumes than cognitively healthy individuals (P < 0.01). Uncorrected caudate volume was not associated with ADAS13 scores, whereas corrected lower caudate volumes were significantly associated with poorer cognitive performance (P < 0.0001).ConclusionsPresence of WMHs leads to systematic inaccuracies in GM segmentations, particularly for the caudate, which can also change clinical associations. While specifically measured for the Freesurfer toolkit, this problem likely affects other algorithms.


Sign in / Sign up

Export Citation Format

Share Document