Combustion characteristics of linseed (Linum usitatissimum) methyl ester fuelled biodiesel blends in variable compression ratio diesel engine

2018 ◽  
Vol 17 (1) ◽  
pp. 38-51 ◽  
Author(s):  
Ganesh S. Warkhade ◽  
A. Veeresh Babu
2020 ◽  
Vol 17 (5) ◽  
pp. 733-737
Author(s):  
Chiranjeeva Rao Seela ◽  
Ravi Sankar B.

Purpose The purpose of this paper is to assess the influence of blends of Jatropha methyl ester (JME) and its nano Al2O3 emulsion on variable compression ratio diesel engine. The oxygen in alumina contributed for the smooth burning and resulted in improved performance and emissions. Design/Methodology/Approach The biodiesel (methyl ester) is prepared from the raw Jatropha oil. The B10, B20 and B30 blends of and their nanoemulsions are prepared with the 25, 50, 75 and 100 ppm of nano Al2O3. The prepared JME blends and its nanoemulsions are tested in a variable compression ratio (VCR) diesel engine to evaluate the engine performance and emission characteristics. Findings The nanoemulsion B20 + 50 ppm has given maximum brake thermal efficiency (BTE), and with the increased proportion of nanoparticle, the BTE was reduced. Also, the specific fuel consumption is lowest (0.2826 kg/kWh) for B20 + 50 ppm at the compression ratio 16.5 and full load which is 4.10% lower than the diesel and 5.8% lower than the B20 blend. As the load increases, NOx emission increases owing to higher peak temperatures in the combustion chamber. The JME-nano Al2O3 emulsion reduces the HC and CO emission compared with all other fuels. Originality/Value Novel nano emulsions are prepared, characterized and tested on VCR engine.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2230
Author(s):  
Khatha Wathakit ◽  
Ekarong Sukjit ◽  
Chalita Kaewbuddee ◽  
Somkiat Maithomklang ◽  
Niti Klinkaew ◽  
...  

The characterization of pyrolysis oil obtained from mixed waste plastics and its utilization in a compression ignition engine were investigated. The chemical compositions and physicochemical properties of distilled waste plastic oil (WPO) and crude waste plastic oil (CWPO) were analyzed. The experiment was conducted with a variable compression ratio diesel engine at various loads and compression ratios to evaluate combustion characteristics, exhaust emissions, and engine performance. The experimental results show that CWPO contains the highest percentage of carbon atoms in the C4–C11 group, while WPO contains the highest percentage of carbon atoms in the C12–C20 group, similar to the main compositions of diesel fuel. According to the preliminary study in chemical compositions and physicochemical properties, WPO and diesel fuel were selected for the engine test at different compression ratios of 16, 17, and 18 and different engine operating loads of 25%, 50%, and 75% of maximum engine torque at an engine speed of 1500 rpm. It was found that increasing the engine operating load and the compression ratio tends to increase the brake thermal efficiency. Increasing the compression ratio results in a significantly shorter delay time in a combustion state. A lower cetane index and a higher percentage of long chain carbon compounds (C12–C20) could be the main factors affecting higher NOx, CO, and HC emissions with the combustion characteristics of WPO, compared to diesel fuel. The disadvantage of emissions by the use of WPO can be alleviated when the engine is running at maximum load and a high compression ratio.


Sign in / Sign up

Export Citation Format

Share Document