Mechanistic-based verification of a structural layer coefficient for high polymer-modified asphalt mixtures

Author(s):  
Jhony Habbouche ◽  
Elie Y. Hajj ◽  
Peter E. Sebaaly ◽  
Murugaiyah Piratheepan
Author(s):  
Jhony Habbouche ◽  
Elie Y. Hajj ◽  
Peter E. Sebaaly ◽  
Adam J. Hand

Florida Department of Transportation uses the 1993 AASHTO guide to conduct new and rehabilitation designs for all the state’s flexible pavements. Based on previous experience, a structural layer coefficient of 0.44 was found to be well representative of the department’s conventional polymer-modified (PMA) asphalt concrete (AC) mixtures. If the positive impact of the polymer on the layer is assumed to be maintained at higher contents, then the use of high polymer-modified (HP) asphalt binder may lead to a higher AC structural layer coefficient and a reduced AC layer thickness for the same design traffic and serviceability design loss. The objective of this paper was to determine a fatigue-based structural layer coefficient for asphalt mixtures that contain HP binder using comprehensive mechanistic analyses. This approach relied on combining measured engineering properties and performance characteristics of AC mixtures with advanced flexible pavement modeling (3D-Move). A total of eight PMA and eight HP AC mixtures were designed and evaluated in the laboratory. Overall, the HP AC mixtures showed similar or lower dynamic modulus and better fatigue performance models when compared with those of their respective PMA AC mixtures. However, the fatigue-based structural layer coefficients, determined via mechanistic analysis using the service life approach, ranged between 0.33 (lower than 0.44) and 1.32 (greater than 0.44). Using advanced statistical analyses, a fatigue-based structural layer coefficient of 0.54 was determined for HP AC mixtures. This coefficient should still be verified for other modes of distress.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


2018 ◽  
Vol 21 (6) ◽  
pp. 686-702 ◽  
Author(s):  
Jhony Habbouche ◽  
Elie Y. Hajj ◽  
Peter E. Sebaaly ◽  
Murugaiyah Piratheepan

2009 ◽  
Vol 614 ◽  
pp. 289-294 ◽  
Author(s):  
Guo Jun Zhu ◽  
Shao Peng Wu ◽  
Ran Liu ◽  
Lei Zhou

The effects of aging on the fatigue property of polymer modified asphalt mixtures are investigated in this paper. Two kinds of aging procedures are adopted for the aging of specimens prepared with polymer modified asphalt mixtures. One is the short-time aging which means that the hot asphalt mixtures was heated in the oven for 4 hours at 135°C before compacted; The other called natural aging, with the original specimen exposed in the sunlight and subjected to the rain and temperature change for 3, 6 and 9 months. Four-Point Bending Test was conducted to evaluate fatigue properties of aged asphalt mixtures at 15°C compared with the original specimens. Test results indicate that the fatigue line of aged specimens have the same tendency as the original asphalt mixtures. However, the life of aged specimen is decreased significantly when compared with the original ones, especially of the natural aged specimens.


Sign in / Sign up

Export Citation Format

Share Document