Investigating low-frequency dielectric properties of a composite using the distribution of relaxation times technique

Author(s):  
Enis Tuncer ◽  
Nicola Bowler ◽  
I. J. Youngs ◽  
K. P. Lymer
Geophysics ◽  
1970 ◽  
Vol 35 (4) ◽  
pp. 624-645 ◽  
Author(s):  
M. Saint‐Amant ◽  
David W. Strangway

A detailed investigation of the dielectric properties of powdered and solid dry rocks in the frequency range of 50 hz to 2 mhz has revealed the following general characteristics: 1) All dry rocks, powdered and solid, show an increase in both the dielectric constant and the loss tangent as frequency decreases and as temperature increases. This dispersion is believed to be due to polarization associated with charge buildup at grain boundaries or at grain imperfections. 2) Dry powdered rocks often show a thermally‐activated relaxation peak with a typical Debye‐relaxation character. This is due to the presence of pyroxene and biotite and may be associated with other minerals. The relaxation peak is not seen in solid rocks, where it is hidden by the low‐frequency dispersion. 3) At high frequencies, the loss tangent approaches a constant value which is frequency independent. This behavior is observed in many dielectrics and may be the result of a distribution of relaxation times.


2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Erik Goldammer ◽  
Julia Kowal

The distribution of relaxation times (DRT) analysis of impedance spectra is a proven method to determine the number of occurring polarization processes in lithium-ion batteries (LIBs), their polarization contributions and characteristic time constants. Direct measurement of a spectrum by means of electrochemical impedance spectroscopy (EIS), however, suffers from a high expenditure of time for low-frequency impedances and a lack of general availability in most online applications. In this study, a method is presented to derive the DRT by evaluating the relaxation voltage after a current pulse. The method was experimentally validated using both EIS and the proposed pulse evaluation to determine the DRT of automotive pouch-cells and an aging study was carried out. The DRT derived from time domain data provided improved resolution of processes with large time constants and therefore enabled changes in low-frequency impedance and the correlated degradation mechanisms to be identified. One of the polarization contributions identified could be determined as an indicator for the potential risk of plating. The novel, general approach for batteries was tested with a sampling rate of 10 Hz and only requires relaxation periods. Therefore, the method is applicable in battery management systems and contributes to improving the reliability and safety of LIBs.


Author(s):  
B. Kucharska ◽  
J. Michalski ◽  
A. Szymaǹski ◽  
J. [sgrave]viatek

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1173
Author(s):  
Ilze Beverte ◽  
Ugis Cabulis ◽  
Sergejs Gaidukovs

As a non-metallic composite material, widely applied in industry, rigid polyurethane (PUR) foams require knowledge of their dielectric properties. In experimental determination of PUR foams’ dielectric properties protection of one-side capacitive sensor’s active area from adverse effects caused by the PUR foams’ test objects has to be ensured. In the given study, the impact of polytetrafluoroethylene (PTFE) films, thickness 0.20 mm and 0.04 mm, in covering or simulated coating the active area of one-side access capacitive sensor’ electrodes on the experimentally determined true dielectric permittivity spectra of rigid PUR foams is estimated. Penetration depth of the low frequency excitation field into PTFE and PUR foams is determined experimentally. Experiments are made in order to evaluate the difference between measurements on single PUR foams’ samples and on complex samples “PUR foams + PTFE film” with two calibration modes. A modification factor and a small modification criterion are defined and values of modifications are estimated in numerical calculations. Conclusions about possible practical applications of PTFE films in dielectric permittivity measurements of rigid PUR foams with one-side access capacitive sensor are made.


1978 ◽  
Vol 21 (85) ◽  
pp. 115-122
Author(s):  
J. H. Bilgram ◽  
H. Gränicher

AbstractThe interaction of point detects in ice has been neglected for a long time. Experimental data obtained from dielectric measurements on HF-doped crystals stimulated a new evaluation of the possibility of an interaction between Bjerrum defects and ions. In a previous paper it has been shown that this leads us to assume the existence of aggregates of Bjerrum defects and ions. In this paper these aggregates and Bjerrum defects are used to explain the dielectric properties of ice, especially the temperature dependence of the product of the high and low frequency conductivity σ0σ∞.The interaction of Bjerrum defects and impurity molecules leads to a dependence of the concentration of frenkel pairs on Bjerrum-defect concentration. At HF concentrations above the native Bjerrum-defect concentration the formation of a Frenkel pair is enhanced. This leads to the fast out-diffusion which has been studied in highly doped crystals by means of NMR techniques.


2005 ◽  
Vol 3 ◽  
pp. 227-231 ◽  
Author(s):  
V. C. Motrescu ◽  
U. van Rienen

Abstract. In the recent years, the task of estimating the currents induced within the human body by environmental electromagnetic fields has received increased attention from scientists around the world. While important progress was made in this direction, the unpredictable behaviour of living biological tissue made it difficult to quantify its reaction to electromagnetic fields and has kept the problem open. A successful alternative to the very difficult one of performing measurements is that of computing the fields within a human body model using numerical methods implemented in a software code. One of the difficulties is represented by the fact that some tissue types exhibit an anisotropic character with respect to their dielectric properties. Our work consists of computing currents induced by extremely low frequency (ELF) electric fields in anisotropic muscle tissues using in this respect, a human body model extended with muscle fibre orientations as well as an extended version of the Finite Integration Technique (FIT) able to compute fully anisotropic dielectric properties.


2018 ◽  
Vol 24 (4) ◽  
pp. 1103-1115 ◽  
Author(s):  
Dong Zhao ◽  
Ying Liu

In this paper, the transverse wave dispersion in a nematic elastomer (NE) Timoshenko beam is studied by considering anisotropy and viscoelasticity of NEs in the low frequency limit. Firstly, the characteristic equations of wave motion in an NE beam are derived, and then numerically solved to obtain the corresponding phase velocities and attenuation factors. The influences of anisotropic parameter, director rotation and rubber relaxation times on the wave dispersion in an NE beam are discussed. Results show that unlike the situation in general isotropic viscoelastic beam, non-classical viscoelastic wave dispersion is found in NE beams. Geometric dispersion is restrained with the vanishing of cut-off frequencies for shear waves due to director rotation relaxation of NEs. This unique property promises prospective applications of NE beams in optic or acoustic design.


Sign in / Sign up

Export Citation Format

Share Document