Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens

Author(s):  
Stefan Wurster ◽  
Christian Motz ◽  
Reinhard Pippan
2017 ◽  
Vol 754 ◽  
pp. 71-74 ◽  
Author(s):  
H. Zielke ◽  
Martin Abendroth ◽  
Meinhard Kuna

A new generation of multifunctional filters is made of carbon bonded alumina and is investigated within the collaborative research center 920 (CRC920). These filters are used during a casting process with the aim of reducing non-metallic inclusions in the cast product. The high thermal and mechanical loading of the filter requires a fracture mechanical characterization of the investigated ceramic material. In order to determine the fracture toughness of the ceramic material, a chevron-notched beam method (CNB) is applied. A 4-point-bending test set-up was constructed and brought into service, at which the load-displacement curve of small chevron-notched specimens (5 x 6 x 25 mm3) can be measured. The set-up offers the possibility of testing specimens at temperatures up to 1000oC. Preceding numerically work using the finite element method was performed to identify a suitable notch geometry. For this purpose a cohesive zone model was used. A parameter study is presented, which shows the influence of the notch parameter on the load-displacement curve.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


2015 ◽  
Vol 2 (2) ◽  
pp. 70-73
Author(s):  
Kannan.P ◽  
Thambidurai.S ◽  
Suresh.N

Growth of optically transparent single crystals of thiourea succinic acid (TUSA) was grown successfully from aqueous solution by slow evaporation technique. The crystal structure was elucidated using the single crystal XRD. The various functional groups and the modes of vibrations were identified by FT-IR spectroscopic analysis. The optical absorption studies indicate that the optical transparency window is quite wide making its suitable for NLO applications. Thermal stability of the crown crystal carried out by TGA-DTA analysis.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Nina Arnosti ◽  
Marco Meyer ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

The preparation and characterization of [Cu(POP)(biq)][PF6] and [Cu(xantphos)(biq)][PF6] are reported (biq = 1,1′-biisoquinoline, POP = bis(2-(diphenylphosphanyl)phenyl)ether, and xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane). The single crystal structure of [Cu(POP)(biq)][PF6] 0.5Et2O was determined and compared to that in three salts of [Cu(POP)(bq)]+ in which bq = 2,2′-biquinoline. The P–C–P angle is 114.456(19)o in [Cu(POP)(biq)]+ compared to a range of 118.29(3)–119.60(3)o [Cu(POP)(bq)]+. There is a change from an intra-POP PPh2-phenyl/(C6H4)2O-arene π-stacking in [Cu(POP)(biq)]+ to a π-stacking contact between the POP and bq ligands in [Cu(POP)(bq)]+. In solution and at ambient temperatures, the [Cu(POP)(biq)][PF6]+ and [Cu(xantphos)(biq)]+ cations undergo several concurrent dynamic processes, as evidenced in their multinuclear NMR spectra. The photophysical and electrochemical behaviors of the heteroleptic copper (I) complexes were investigated, and the effects of changing from bq to biq are described. Short Cu···O distances within the [Cu(POP)(biq)]+ and [Cu(xantphos)(biq)]+ cations may contribute to their very low photoluminescent quantum yields.


2021 ◽  
Vol 44 (3) ◽  
Author(s):  
T KALAIARASI ◽  
M SENTHILKUMAR ◽  
S SHANMUGAN ◽  
T JARIN ◽  
V CHITHAMBARAM ◽  
...  

2021 ◽  
Vol 32 (3) ◽  
pp. 3232-3246
Author(s):  
R. P. Jebin ◽  
T. Suthan ◽  
T. R. Anitha ◽  
N. P. Rajesh ◽  
G. Vinitha

2017 ◽  
Vol 122 (8) ◽  
pp. 084103 ◽  
Author(s):  
E. Smirnova ◽  
A. Sotnikov ◽  
S. Ktitorov ◽  
H. Schmidt

Sign in / Sign up

Export Citation Format

Share Document