Fracture Toughness Characterization of Carbon Bonded Alumina Using Chevron Notched Specimens

2017 ◽  
Vol 754 ◽  
pp. 71-74 ◽  
Author(s):  
H. Zielke ◽  
Martin Abendroth ◽  
Meinhard Kuna

A new generation of multifunctional filters is made of carbon bonded alumina and is investigated within the collaborative research center 920 (CRC920). These filters are used during a casting process with the aim of reducing non-metallic inclusions in the cast product. The high thermal and mechanical loading of the filter requires a fracture mechanical characterization of the investigated ceramic material. In order to determine the fracture toughness of the ceramic material, a chevron-notched beam method (CNB) is applied. A 4-point-bending test set-up was constructed and brought into service, at which the load-displacement curve of small chevron-notched specimens (5 x 6 x 25 mm3) can be measured. The set-up offers the possibility of testing specimens at temperatures up to 1000oC. Preceding numerically work using the finite element method was performed to identify a suitable notch geometry. For this purpose a cohesive zone model was used. A parameter study is presented, which shows the influence of the notch parameter on the load-displacement curve.

2011 ◽  
Vol 228-229 ◽  
pp. 345-350 ◽  
Author(s):  
Bin Wang ◽  
Chao Ma ◽  
Peng Wang

In this research X65 steel is chosen as the test material, and tension test and three-point bending test of X65 are made, then we got the load - displacement curve and the resistance curve. Using the finite element method to derive load - displacement curves of tension test based on the micro-plastic damage model, and the parameters controlling ductile crack growth are gotten by compared with the test results. We obtained the resistance curve of numerical calculation by WARP3D based on the parameters, which in good agreement with the experimental results. The results indicate that the three-point bending fracture toughness can be predicted by tension test based on micro-plastic damage mechanism.


2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950105
Author(s):  
XIANGQIAN FAN ◽  
JUEDING LIU

To optimize the strengthening method using the fiber reinforced polymer (FRP) for the reinforcement of the concrete structure with cracks, the three-point bending test was conducted on the concrete beams wrapped with different layers of FRP materials. The strain gauges were pasted on the surface of the specimens to measure the initial cracking load. The crack mouth opening displacement (CMOD) was utilized to test the load–crack mouth opening displacement curve. According to the improved calculation formula of the fracture toughness, the critical effect crack length [Formula: see text], initiation fracture toughness [Formula: see text] and instability fracture toughness [Formula: see text] of specimens were calculated. The test results showed that, under the same initial crack depth, the peak load of FRP reinforced concrete decreases with the increase of FRP pasting layer. When there was one layer wrapped over the specimen, the instability toughness of the specimen reached the maximum value and the crack resistance was the best. Based on acoustic emission testing method, the acoustic emission parameters of the above-mentioned concrete during fracture process were identified and collected. The optimal layer of the FRP reinforced concrete with cracks was analyzed from the acoustic emission method.


2014 ◽  
Vol 566 ◽  
pp. 286-291
Author(s):  
Zoltan Major ◽  
Martin Reiter

The fracture behavior of engineering polymers is usually characterized at high loading rates using Charpy specimens. However, due to the presence of dynamic effects the conventional force based analysis for determining fracture toughness values is applicable only up to 1 m/s using tree point bending test configurations. This difficulty can be overcome in principle, by applying dynamic analysis methods (e.g. dynamic key curve (DKC) analysis) or by applying tensile loading fracture configurations. The applicability of pre-cracked Charpy specimens for determining fracture toughness values for polymeric materials over a wide loading rate range is investigated in this study.


Author(s):  
Zafrul Khan ◽  
Hasan M. Faisal ◽  
Rafiqul Tarefder

Fracture toughness and fracture energy release rate are two important parameters to understand the crack propagation within any material. Fracture toughness of asphalt concrete (AC) is vital to explain the fatigue cracking and low temperature cracking of asphalt pavement. These two types of distresses are still unsolved issues for asphalt researchers. Measuring fracture toughness of AC is not a new phenomenon. Recently, researchers have used several techniques to measure the fracture toughness of AC. Tests like semi-circular bending (SCB) and disk-shaped compact specimen (DCT) testing have been used to measure the fracture toughness of the AC. From the SCB or DCT tests, past researchers have shown that crack in AC propagates through mainly binder and mastic phase. All these conventional tests are carried out in macro scale. It is important to understand that before propagation of these macro scale cracks, the cracks initiates at the nano/micro scale level. With the increment of the loads these nanoscale cracks become macro scale cracks and propagates through the sample. Therefore, it is important to understand the cracks at nanoscale. In this study, nanoindentation test was introduced to measure the fracture toughness of the asphalt concrete. In a nanoindentation test, the sample surface is indented with a loaded indenter. For this test, Berkovich indenter with load control method was used. A field cored asphalt concrete sample was used for this study. The sample was collected by coring at interstate 40 (I-40) near Albuquerque, New Mexico. The sample was field aged for four years. The maximum load applied in this study was 5-mn and the unloading was done at a faster rate than the loading rate. From the load-displacement curves of the nanoindentation tests, fracture toughness of the samples was measured. The unloading curve of the nanoindentation test was further used to obtain reduced modulus of the asphalt concrete using Oliver-Pharr method. In this study, fracture energy is thought of as a portion of irreversible energy. This irreversible energy is comprised of plastic energy and energy required for propagation of crack. By analyzing the load displacement curve along with the maximum indentation depth, energy release rate and mode I fracture toughness of asphalt concrete was measured.


2021 ◽  
Vol 1163 ◽  
pp. 40-47
Author(s):  
Xi Lin Luo ◽  
Jian Hui Wei ◽  
Xue Kang Zhu ◽  
Hong Yin

Three dimensional finite element models of composite joints were established to investigate the load-displacement behavior, failure mode of multi-axial tubular joints under bending load, and stress-strain relationship in some key positions. The joints were prepared by plain weave fabric. The effective elastic constants of fabric composite were calculated using meso-mechanics theory. A progressive failure analysis was performed using ABAQUS software to obtain the ultimate strength and failure mode of the sample. In addition, the damage process, failure mode and damage position was further studied. The bending properties of the joints were also presented by quasi-static load test using a three-point bending test device. Results of the ultimate load and damage analyses are compared to experimental data. The accuracy of the method was proved by the consistency of the relation between the load displacement curve trend and the correlation of the damage position and failure pattern.


Sign in / Sign up

Export Citation Format

Share Document