scholarly journals The core structure and recombination energy of a copper screw dislocation: a Peierls study

Author(s):  
B. A. Szajewski ◽  
A. Hunter ◽  
I. J. Beyerlein
1981 ◽  
Vol 44 (6) ◽  
pp. 1225-1237 ◽  
Author(s):  
Y. Minonishi ◽  
S. Ishioka ◽  
M. Koiwa ◽  
S. Morozumi ◽  
M. Yamaguchi

The change in core structure of the screw dislocation in a body-centred cubic lattice subjected to a general applied stress tensor is studied by means of computer simulation. The large variations observed are found not to be correlated with the applied stress, in that the same deformed core structure can be realized by many different combinations of stress components. Instead, the core structure is found to be characterized almost exclusively by the magnitude and orientation of the induced glide strain, with a much smaller dependence on the glide stress. This means that while the force acting on a dislocation is defined by the applied stress, it is the elastic strain within the lattice that determines the resistance to motion. This explains the anomalously large dependence of the Peierls stress upon non-glide components of the applied stress tensor. The Peierls stress varies strongly with the shape of the dislocation core, which depends upon the glide strain. However, the glide strain is in turn dependent on non-glide components of the applied stress by way of anisotropic elastic couplings. Therefore the Peierls stress is itself dependent on the non-glide stresses, to an extent governed by the elastic anisotropy. The possible origin of the strain-dependence of the core structure in elastic strain multiplet forces (equal and opposite generalized forces acting on the dislocation) is discussed briefly, as are implications for the phenomenon of ductile fracture.


The behaviour of the ½ a <111> screw dislocation core in the presence of an external shear stress on {110} planes has been studied for a variety of effective interionic potentials, each representing a stable b. c. c. lattice. The distortion and motion of the core are described using the concept of fractional dislocations, which are imperfect dislocations bounding a ribbon of generalized (unstable) stacking fault. Three essentially distinct types of movement are found, and the relation of these to plastic flow and twinning in real b. c. c. metals is discussed. It is found that the movement of the dislocation core can be rationalized in terms of the relative stresses needed to create generalized stacking faults on {110} and {112} planes.


Author(s):  
Hideko Abe

This article discusses how the intersection of grammatical gender and social gender, entwined in the core structure of language, can be analyzed to understand the dynamic status of selfhood. After reviewing a history of scholarship that demonstrates this claim, the discussion analyzes the language practices of transgender individuals in Japan, where transgender identity is currently understood in terms of sei-dōitsusei-shōgai (gender identity disorder). Based on fieldwork conducted between 2011 and 2017, the analysis reveals how individuals identifying with sei-dōitsusei-shōgai negotiate subject positions by manipulating the specific indexical meanings attached to grammatical structures.


Author(s):  
Xiaoyun Ran ◽  
Qian Zhou ◽  
Jin Zhang ◽  
Shanqiang Wang ◽  
Gui Wang ◽  
...  

Started from citric acid (CA) and ethylenediamine derivatives, a solvent-free, catalyst-free and highly yield synthesis approach for bicyclic 2-pyridones was presented. Continuing to modify the core structure, a series of...


1992 ◽  
Vol 40 (8) ◽  
pp. 2125-2128 ◽  
Author(s):  
Noriko SHIMIZU ◽  
Masashi TOMODA ◽  
Katsutoshi TAKADA ◽  
Ryoko GONDA

Sign in / Sign up

Export Citation Format

Share Document