scholarly journals Effect of apartment building energy renovation on hourly power demand

2019 ◽  
Vol 38 (10) ◽  
pp. 918-936 ◽  
Author(s):  
Janne Hirvonen ◽  
Juha Jokisalo ◽  
Juhani Heljo ◽  
Risto Kosonen
2020 ◽  
Vol 172 ◽  
pp. 12005
Author(s):  
Anti Hamburg ◽  
Targo Kalamees

The majority of old apartment buildings were designed with an unheated basement. Building service systems such as district heating heat exchangers and pipes for domestic hot water and for space heating are usually located in this unheated basement. In addition, these locations are connected with shafts. All these pipe’s heat losses increase air temperature in the basement. If these losses are included into the building energy balance, then they decrease heat loss through the basement ceiling. The basement’s heat balance is also dependent on heat loss from the basement envelope and outdoor air exchange in the basement. In early stages of design, designers and energy auditors need rough models to make decisions in limited information conditions. Once the effects of heat losses from pipes become apparent, they need to be factored into the buildings energy balance, and their effects on heat loss through the basement ceiling needs to be calculated. In this paper we analyse the effect these heat losses have on the service system’s heat gains and heat loss through an uninsulated basement ceiling at different basement insulation levels and with different thicknesses of pipe insulation. From our study we found that pipe losses in the basement increase the building energy performance value by at least 4 kWh/(m²∙a) and their impact on a renovated apartment building is very important.


2021 ◽  
Vol 246 ◽  
pp. 09006
Author(s):  
Yuchen Ju ◽  
Juha Jokisalo ◽  
Risto Kosonen ◽  
Ville Kauppi ◽  
Philipp Janßen

In order to realize the vision of climate neutrality, the proportion of renewable sources is increasing in the energy system. To accommodate the energy system, demand response (DR) has been established to make the building energy use flexible. This study aims to investigate the effect of DR actions on energy flexibility in a Finnish district heated apartment building. The rule-based control algorithm was applied for the DR control of space heating based on the Finnish dynamic hourly district heat price. This research was implemented with the validated dynamic building simulation tool IDA ICE. The obtained results show that price fluctuation impacts the DR control and further affects the amount of charging and discharging energies. February has the maximum hourly district heat price with the largest variation, which results in the maximum charging energy of 968 kWh during a single charging period being close to the heat storage capacity of a fully mixed 28 m3 water tank with ∆T of 30 K. The studied demand response control can significantly shape the heating power demand of the buildings and increase the flexibility of the energy use.


2014 ◽  
Vol 484-485 ◽  
pp. 737-741 ◽  
Author(s):  
Yan Fang Lian

Lighting electricity is the most basic power demand for factories and enterprises,lighting quality has a direct relationship with the safety in production, labour productivity,the quality of the products and labor hygiene. In this paper, an overview of lighting energy-saving design, factory lighting design features, plant lighting energy-saving design, scientific energy-saving lighting design and combined with the design example of building energy-saving lighting design are discussed.A. Summary of energy-saving lighting design.


2015 ◽  
Vol 8 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Akihiko KAWASHIMA ◽  
Takuma YAMAGUCHI ◽  
Ryosuke SASAKI ◽  
Shinkichi INAGAKI ◽  
Tatsuya SUZUKI ◽  
...  

2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Sign in / Sign up

Export Citation Format

Share Document