Phytostabilization of Pb and Cd polluted soils using Helianthus petiolaris as pioneer aromatic plant species

2019 ◽  
Vol 22 (5) ◽  
pp. 459-467 ◽  
Author(s):  
A. Saran ◽  
L. Fernandez ◽  
F. Cora ◽  
M. Savio ◽  
S. Thijs ◽  
...  
Author(s):  
Rodney Alexandre Ferreira Rodrigues ◽  
Glyn Mara Figueira ◽  
Adilson Sartoratto ◽  
Lais Thiemi Yamane ◽  
Verônica Santana de Freitas-Blanco

2008 ◽  
Vol 31 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Audil Rashid ◽  
Najma Ayub ◽  
Tahira Ahmad ◽  
Jamshaid Gul ◽  
Abdul G. Khan

Author(s):  
Jacek Antonkiewicz ◽  
Czesława Jasiewicz ◽  
Pavel Ryant

The studies conducted from 1997 to 1999 in a vegetation hall were performed as a pot experiment on ordinary silt soil. Jerusalem artichoke, maize, Sida hermaphrodita Rusby, amaranth and hemp were used as indicator plants. The results confirmed, great diversification of the element contents which depends not only on the species but also on the part of individual plants. Analysis of the data revealed also another dependence: increased concentration of heavy metals in the soil corresponded to a higher content of heavy metals in the plants. Significant differences in this respect were observed for the plant species grown in unpolluted or differently contaminated soil.


2009 ◽  
Vol 8 (9) ◽  
pp. 1472-1479 ◽  
Author(s):  
Sarfaraz Khan Marwa ◽  
Muhammad Aslam Khan ◽  
Fazal- ur-Rehman ◽  
Inayat Ullah Bhat
Keyword(s):  

Bothalia ◽  
2006 ◽  
Vol 36 (1) ◽  
pp. 101-127 ◽  
Author(s):  
I. M. Weiersbye ◽  
E. T. F. Witkowski ◽  
M. Reichardt

Gold and uranium tailings (‘slimes’) dams and the adjacent polluted soils in the deep-level mining regions of South Africa (Carletonville, Klerksdorp and Welkom) were surveyed for the frequency of occurrence of naturally colonizing, actively introduced and persisting plant species. Fifty-six tailings dams with a combined area of 5864 ha. and a similar area o f tail- ings-polluted soils, were surveyed between July 1996 and March 1997. During the survey, 376 plant species and subspecies were recorded from the dams and adjacent polluted soils, with an additional  8 6  records obtained between 1998 and 2003 (i.e. a total of 462 taxa: species and infraspecific species). Overall, the most commonly represented families were the Poaceae (107 species and subspecies), Asteraceae (81). Fabaceae (55) and Anacardiaceae (16). with other families represented by just one to 14 species. Only 60 species were common to all three regions, and of these 24 had been introduced during rehabilitation attempts. Most of the species found on tailings were persisters or natural colonizers (53-88%, depending on substrate), with the vast majority being indigenous and perennial taxa (76% and 85% respectively), with semi-woody to woody growth forms (6 6% being resprouters, forbs, shrubs and trees). Less than 4% of the naturally-colonizing taxa found during the survey had also been introduced by vegetation practitioners. The majority of introduced plants were alien herbaceous taxa. The number and frequency of annuals was only high on recently vegetated sites, whereas annuals were rarely present on old-vegetated and never-vegetated dams. This list includes a wide range of indigenous plant species that may be suitable for phytoremediation of tailings dams and polluted soils due to their apparent tolerance of acid mine drainage and salinity.


2009 ◽  
Vol 89 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Ravanbakhsh Shirdam ◽  
Ali Daryabeigi Zand ◽  
Gholamreza Nabi Bidhendi ◽  
Nasser Mehrdadi

To date, many developing countries such as Iran have almost completely abandoned the idea of decontaminating oil-polluted soils due to the high costs of conventional (physical/chemical) soil remediation methods. Phytoremediation is an emerging green technology that can become a promising solution to the problem of decontaminating hydrocarbon-polluted soils. Screening the capacity of native tolerant plant species to grow on aged, petroleum hydrocarbon-contaminated soils is a key factor for successful phytoremediation. This study investigated the effect of hydrocarbon pollution with an initial concentration of 40 000 ppm on growth characteristics of sorghum (Sorghum bicolor) and common flax (Linum usitatissumum). At the end of the experiment, soil samples in which plant species had grown well were analyzed for total petroleum hydrocarbons (TPHs) removal by GC-FID. Common flax was used for the first time in the history of phytoremediation of oil-contaminated soil. Both species showed promising remediation efficiency in highly contaminated soil; however, petroleum hydrocarbon contamination reduced the growth of the surveyed plants significantly. Sorghum and common flax reduced TPHs concentration by 9500 and 18500 mg kg‑1, respectively, compared with the control treatment.


2017 ◽  
Vol 76 (5) ◽  
pp. 1081-1089 ◽  
Author(s):  
Cristina M. Monteiro ◽  
Cristina S. C. Calheiros ◽  
Paulo Palha ◽  
Paula M. L. Castro

Green roof technology has evolved in recent years as a potential solution to promote vegetation in urban areas. Green roof studies for Mediterranean climates, where extended drought periods in summer contrast with cold and rainy periods in winter, are still scarce. The present research study assesses the use of substrates with different compositions for the growth of six aromatic plant species – Lavandula dentata, Pelargonium odoratissimum, Helichrysum italicum, Satureja montana, Thymus caespititius and T. pseudolanuginosus, during a 2-year period, and the monitoring of water runoff quality. Growing substrates encompassed expanded clay and granulated cork, in combination with organic matter and crushed eggshell. These combinations were adequate for the establishment of all aromatic plants, allowing their propagation in the extensive system located on the 5th storey. The substrate composed of 70% expanded clay and 30% organic matter was the most suitable, and crushed eggshell incorporation improved the initial plant establishment. Water runoff quality parameters – turbidity, pH, conductivity, NH4+, NO3−, PO43- and chemical oxygen demand – showed that it could be reused for non-potable uses in buildings. The present study shows that selected aromatic plant species could be successfully used in green roofs in a Mediterranean climate.


Sign in / Sign up

Export Citation Format

Share Document