A 17-Level Switched Voltage Source Multi-Level Inverter Topology with Low-Switching Frequency Control

2016 ◽  
Vol 44 (19) ◽  
pp. 2185-2197 ◽  
Author(s):  
Charles Ikechukwu Odeh ◽  
Linus Uchechukwu Anih ◽  
Emenike Chinedozi Ejiogu
Author(s):  
Mr. L NarayanaGadupudi Et.al

 Internal Liability of power system transmission lines influenced by the turbulences owing to catastrophic disasters. In order to achieve Constant Voltage Stability at both ends of the transmission lines, Static Synchronous Compensator (STATCOM) is imperative.  Voltage source Converter mechanisms augment with switching frequency control methodologies are widely adopted to regulate the reactive power. By deliberating IEEE Standards, the minimization of Total Harmonic Distortion (THD) is conceivable with STATCOM. This paper depicts the advancement of VSC based STATCOM approaches and the methodologies to minimize the switching losses. Economical management of High-Power ratings systems is also discussed in this paper


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1623
Author(s):  
Bor-Ren Lin

In order to realize emission-free solutions and clean transportation alternatives, this paper presents a new DC converter with pulse frequency control for a battery charger in electric vehicles (EVs) or light electric vehicles (LEVs). The circuit configuration includes a resonant tank on the high-voltage side and two variable winding sets on the output side to achieve wide output voltage operation for a universal LEV battery charger. The input terminal of the presented converter is a from DC microgrid with voltage levels of 380, 760, or 1500 V for house, industry plant, or DC transportation vehicle demands, respectively. To reduce voltage stresses on active devices, a cascade circuit structure with less voltage rating on power semiconductors is used on the primary side. Two resonant capacitors were selected on the resonant tank, not only to achieve the two input voltage balance problem but also to realize the resonant operation to control load voltage. By using the variable switching frequency approach to regulate load voltage, active switches are turned on with soft switching operation to improve converter efficiency. In order to achieve wide output voltage capability for universal battery charger demands such as scooters, electric motorbikes, Li-ion e-trikes, golf carts, luxury golf cars, and quad applications, two variable winding sets were selected to have a wide voltage output (50~160 V). Finally, experiments with a 1 kW rated prototype were demonstrated to validate the performance and benefits of presented converter.


2018 ◽  
Vol 54 (5) ◽  
pp. 4612-4620 ◽  
Author(s):  
Jose M. Cano ◽  
Angel Navarro-Rodriguez ◽  
Andres Suarez ◽  
Pablo Garcia

Author(s):  
Anjana Jain ◽  
R. Saravanakumar ◽  
S. Shankar ◽  
V. Vanitha

Abstract The variable-speed Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion System (WECS) attracts the maximum power from wind, but voltage-regulation and frequency-control of the system in standalone operation is a challenging task A modern-control-based-tracking of power from wind for its best utilization is proposed in this paper for standalone PMSG based hybrid-WECS comprising Battery Energy Storage System (BESS). An Adaptive Synchronous Reference Frame Phase-Locked-Loop (SRF-PLL) based control scheme for load side bi-directional voltage source converter (VSC) is presented for the system. MATLAB/Simulink model is developed for simulation study for the proposed system and the effectiveness of the controller for bi-directional-converter is discussed under different operating conditions: like variable wind-velocity, sudden load variation, and load unbalancing. Converter control scheme enhances the power smoothening, supply-load power-matching. Also it is able to regulate the active & reactive power from PMSG-BESS hybrid system with control of fluctuations in voltage & frequency with respect to varying operating conditions. Proposed controller successfully offers reactive-power-compensation, harmonics-reduction, and power-balancing. The proposed scheme is based on proportional & integral (PI) controller. Also system is experimentally validated in the laboratory-environment and results are presented here.


Sign in / Sign up

Export Citation Format

Share Document