Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells

2018 ◽  
Vol 37 (2) ◽  
pp. 66-75 ◽  
Author(s):  
Mehmet Akdag ◽  
Suleyman Dasdag ◽  
Fazile Canturk ◽  
Mehmet Zulkuf Akdag
1988 ◽  
Vol 50 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Ryuichiro KUWANA ◽  
Seiji ARASE ◽  
Yasushi SADAMOTO ◽  
Hideki NAKANISHI ◽  
Katsuyuki TAKEDA

1989 ◽  
Vol 51 (1) ◽  
pp. 66-70 ◽  
Author(s):  
Ryuichiro KUWANA ◽  
Seiji ARASE ◽  
Yasushi SADAMOTO ◽  
Kimitaka KANNO ◽  
Hideki NAKANISHI ◽  
...  

Author(s):  
Samoylova A.V. ◽  
Snimshchikova I.A. ◽  
Plotnikova M.O. ◽  
Yakushkina N.Y.

Alopecia is a common pathology among the active population, which leads not only to cosmetic defects, but also to the development of somatic diseases against the background of traumatic effects and chronic stress. The pathogenetic mechanisms of hair follicle formation are complex and diverse, since numerous factors, including the components of the Wnt signaling pathway, have an effect on its morphogenesis, the study of which is the subject of this study. The search for possible early markers of the development of alopecia led to interest in the study of the main morphogenic proteins of WNT - the signaling pathway (one of the intracellular signaling pathways, which control the development of blood vessels, as well as the growth and division of hair follicle cells) sclerostin and β-catenin among patients with androgenic and alopecia areata. The article presents data on the quantitative content of β-catenin and sclerostin in the blood serum in patients with androgenic and alopecia areata. Their possible pathways of complex interaction and influence on the morphogenesis of the hair follicle and the activity of the Wnt-signaling pathway have been analyzed, and the relationship between changes in the level of morphogenic proteins of the WNT-signaling pathway with sex and the course of the disease has been described. Establishment of the prognostic role of morphogenic proteins of the WNT signaling pathway in androgenic and alopecia areata will allow not only identify the personal risk of disease progression and to determine approaches to targeted therapy, but to develop and introduce updated diagnostic screening into dermatological practice.


2007 ◽  
Vol 405 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Joseph Friedman ◽  
Sarah Kraus ◽  
Yirmi Hauptman ◽  
Yoni Schiff ◽  
Rony Seger

The exposure to non-thermal microwave electromagnetic fields generated by mobile phones affects the expression of many proteins. This effect on transcription and protein stability can be mediated by the MAPK (mitogen-activated protein kinase) cascades, which serve as central signalling pathways and govern essentially all stimulated cellular processes. Indeed, long-term exposure of cells to mobile phone irradiation results in the activation of p38 as well as the ERK (extracellular-signal-regulated kinase) MAPKs. In the present study, we have studied the immediate effect of irradiation on the MAPK cascades, and found that ERKs, but not stress-related MAPKs, are rapidly activated in response to various frequencies and intensities. Using signalling inhibitors, we delineated the mechanism that is involved in this activation. We found that the first step is mediated in the plasma membrane by NADH oxidase, which rapidly generates ROS (reactive oxygen species). These ROS then directly stimulate MMPs (matrix metalloproteinases) and allow them to cleave and release Hb-EGF [heparin-binding EGF (epidermal growth factor)]. This secreted factor activates the EGF receptor, which in turn further activates the ERK cascade. Thus this study demonstrates for the first time a detailed molecular mechanism by which electromagnetic irradiation from mobile phones induces the activation of the ERK cascade and thereby induces transcription and other cellular processes.


Author(s):  
Marcus Brown ◽  
John Bradshaw ◽  
Rong Z. Gan

Abstract Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea's response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid-structure interfaces. The model's middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate displacements up to 28.5µm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2µm from a BOP input of 30.7kPa. The cochlea's spiral shape caused asymmetric pressure distributions as high as 4kPa across the cochlea's width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses towards a model able to predict potential hearing loss after blast.


Author(s):  
Elia Valentini ◽  
Giuseppe Curcio

Nowadays nearly more than half of human beings on the planet are directly or indirectly exposed to an “evolutionary” novel physical agent: the electromagnetic fields (EMFs) emitted by cellular phones, base stations, as well as other types of wireless communication technologies. More than 10 years ago several studies reported that cognitive functions of human beings may have been altered while exposed to radiofrequency (RF) EMFs. Yet, the genuine effect of these non-ionizing radiations on human behaviour was not replicated by several other recent and more methodologically robust studies. Latest reviews and metanalyses confirmed the paucity of evidence in favour of psychomotor and cognitive effects of acute RF EMF exposure on human volunteers in well controlled laboratory settings. Thus, despite persisting concerns on potential biologic effects of acute RF EMFs irradiation, there is substantial lack of evidence that RF radiation can affect cognitive functions in humans.


Author(s):  
Giuseppe Curcio

The first studies on humans addressing cognitive functioning changes as a consequence of radiofrequency (RF) EMFs exposure date back to almost 20 years ago. The effects on human behavior showed in those pioneering works indicated an improvement of performance under the exposure to the signal, compared with sham exposure. These first and striking results were not fully replicated by subsequent studies that were characterized by a more methodological robustness and attention to exposure aspects. In accordance with this view, latest reviews and metanalyses have confirmed the paucity of evidence and the lack of reliability of psychomotor and cognitive effects of acute RF EMF exposure on human volunteers, particularly when assessed in well controlled laboratory settings. Thus, despite the public opinion about potential biologic effects of acute RF EMFs irradiation, it can be concluded that to date there is substantial lack of evidence about a negative influence of non-ionizing radiations on cognitive functioning in humans.


Sign in / Sign up

Export Citation Format

Share Document