Investigation of coarse-grained models across a glass transition

2020 ◽  
Vol 18 (2-3) ◽  
pp. 185-199 ◽  
Author(s):  
Ryan J. Szukalo ◽  
W. G. Noid
2021 ◽  
Author(s):  
Zhiye Tang ◽  
Susumu Okazaki

Glass transition is an important phenomenon of polymer materials and it has been intensively studied over the past a few decades. However, the influencing factors arising from the chemical structures of the polymers are often ignored due to a continuous or coarse-grained description of the polymer. Here, we approached this phenomenon using all-atomistic molecular dynamics (MD) simulations and two conventionally used polymer materials, polycarbonate (PC) and poly-(methyl methacrylate) (PMMA). We reproduced the glass transition temperatures (Tg) of the two materials reasonably well. Then we characterized and investigated the glass transition process by looking at the changes of potential energy, dihedral transition, and thermal fluctuation of the individual degrees of freedom in the systems, over the entire temperature range of glass transition. As previously reported, the dihedral angles stop their conformational changes gradually at the Tg, especially for the main chain dihedrals, and sidechain rotations immediately rooting from the main chain. The volumetric change during the temperature decrease is confirmed to be because of conformational adjustment, probably due to the tendency of chain stretching for the maintenance of the radius of gyration, and the loss of thermal energy. The strength of motions of single degrees of freedom and polymer chains, and overall slow motions obtained by normal mode analysis (NMA) shows that different motions at different spatial scale may gradually stop at distinct temperature in the MD simulation temporal and spatial scales. Presumably, the small spatial scale do not contribute to the glass transition at the experimental scale since the timescale is much longer than their relaxation time.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hua Tong ◽  
Hajime Tanaka

AbstractGlass transition is characterised by drastic dynamical slowing down upon cooling, accompanied by growing spatial heterogeneity. Its rationalisation by subtle changes in the liquid structure has been long debated but remains elusive, due to intrinsic difficulty in detecting the underlying complex structural ordering. Here we report that structural order parameter characterising local packing capability can well describe the glassy dynamics not only macroscopically but also microscopically, no matter whether it is driven by temperature or density. A Vogel-Fulcher-Tammann (VFT)-like relation is universally identified between the structural relaxation time and the order parameter for supercooled liquids with isotropic interactions. More importantly, we find such an intriguing VFT-like relation to be statistically valid even at a particle level, between spatially coarse-grained structural order and microscopic particle-level dynamics. Such a unified description of glassy dynamics based solely on structural order is expected to contribute to the ultimate understanding of the long-standing glass-transition problem.


2006 ◽  
Vol 924 ◽  
Author(s):  
Jayeeta Ghosh ◽  
Roland Faller

ABSTRACTThe glass transition temperature in thin film depends strongly on film thickness and interaction with the substrate and it is normally a priori not clear which way it deviates from the bulk value. This causes new challenge in the technological advancement of smaller and smaller electronic devices. In this study molecular dynamics simulations of a low-molecular weight organic glass former, ortho-terphenyl, are carried out in bulk and freestanding films. The main motivation is to provide insight into the confinement effect without interface interactions. Based on earlier models of ortho-terphenyl we developed an atomistic model for bulk simulations. The model reproduces the literature data from simulations as well as experiments. After characterizing the bulk model we form a freestanding film. This film gives us the opportunity to study the dynamical heterogeneity near the glass transition by in-plane mobility and reorientation dynamics. We also develop a structurally coarse-grained model for this glass former based on our atomistic model to study bigger system for a longer period of time.


Sign in / Sign up

Export Citation Format

Share Document